TRANSPORTATION RESEARCH COMMITTEE

TRC0701

Standard Penetration Hammer Efficiency for N-Value Correction

David Ross

Final Report

Standard Penetration Hammer Efficiency for N-Value Correction

Project Number TRC-0701

Final Report

November 2007

TABLE OF CONTENTS

1. Introduction	
1.1 General Overview	1
1.2 Objective	
2. Calculations, Equipment and Training for Energy Measurements	3
2.1 Energy Calculations	3
2.2 Equipment	
2.2.1 Instrumented Rod	3
2.2.1.1 Strain Gauges	3
2.2.1.2 Accelerometers	4
2.2.2 Connections	4
2.2.3 SPT Analyzer	4
2.3 Training	4
3. Field Testing Program	5
3.1 Testing Locations	5
3.2 Field Testing – Phase I	6
3.2.1 October 3, 2006	6
3.2.2 October 5, 2006	7
3.3 Field Testing – Phase II	7
3.3.1 Failing 1500	7
3.3.2 CME 750 All Terrain Rig	8
3.3.3 CME 75 Truck Mounted Rig	8
3.3.4 CME 45 Skid Rig	8
3.3.5 CME 850	8
4. Data Analysis	10
4.1 Data Quality Evaluation	10
4.2 Data Adjustment	10
4.3 Correction Factors	14
4.4 Comparison of N ₆₀ 's	14
4.5 Comparison to Similar Hammers	17
5. Conclusions and Recommendations	18
5.1 Conclusions	18
5.2 Recommendations	18
5.2.1 Immediate Action	18
5.2.2 Potential Future Action	22
Bibliography	23

CHAPTER 1

Introduction

1.1 General Overview

The Standard Penetration Test, commonly known as the SPT, has been performed by the Arkansas Highway and Transportation Department since the early 1960's. AHTD uses the results of the SPT to design foundations for bridge and other structures, evaluate retaining wall stability, evaluate liquefaction potential during potential future seismic events as well as to evaluate soil strength for other various purposes.

The SPT is performed by driving a split barrel sampler of standard dimensions into the ground using a 140 lb hammer with a "free" fall of 30 inches. The number of blows are counted for each of three 6" intervals. The total number of blows it takes to drive the sampler the last 12 inches is the SPT N-value. The first 6 inches of penetration is discarded as it is considered to be necessary to seat the sampler through potentially disturbed material in the bottom of the hole.

The SPT was developed in the late 1920's and is still the most popular way to obtain subsurface information. It is estimated that 85 to 90 percent of conventional foundation design in North and South America is made using the SPT (Bowles 1996). The method has been standardized as ASTM D 1586 since 1958 with periodic revisions to date. One reason for the SPT's popularity is the fact that a sample is obtained during the test that allows for classification and laboratory testing. Another advantage of this test is the vast amount of historical data and the many empirical correlations that have been developed based on that data. Undrained shear strength, friction angle, consistency, density, liquefaction potential, Young's modulus, shear modulus, settlement potential in sands, and bearing capacity are some of the geotechnical design parameters that have published correlations to the SPT N-value.

One problem with the SPT is the well documented variability in the resulting Nvalue for the same soil conditions. ASTM D 1586 allows various drilling methods, hammer types, sampling rods, and liners to be used in conjunction with the test. Each of these items as well as the operator's techniques and equipment's condition introduce some variability into the test. Of all the documented sources of variability in the energy delivered to the drill rods, the hammer type is considered to be the most influential. Energy efficiencies have been reported to vary between 30% and 100% depending on the type of hammer system used. ASTM D 1586 states that the variability in N-values produced by different drill rigs and operators may be reduced by measuring that part of the hammer energy delivered into the drill rods from the hammer and adjusting N on the basis of comparative energies. AHTD currently uses five different hammer systems. Four of these are Central Mine Equipment (CME) automatic hammers and one is a Dietrich automatic hammer.

1.2 Objective

The objective of this research project is to determine the most appropriate correction factor by which to adjust the N-value based on measurements of the energy imparted into the sampling rod by each of the five hammers currently in use by AHTD. This study consists of three tasks. The first task is the field testing. This task consisted of measuring the energy imparted into the drill rod during at least 5 SPT Tests for each of the five AHTD hammers. The second task is the data review. This task included the reduction of the data, evaluation of the data quality, and the analysis of the data. The third task is the development and presentation of the recommendations addressing how AHTD should correct the SPT N values and what correction factors are most appropriate for each hammer.

CHAPTER 2

Calculations, Equipment and Training for Energy Measurements

2.1 Energy Calculations

The method used to calculate the energy imparted by the SPT hammer into the drill rod for this project is known as the EFV method. This method uses the force and velocity measured in the sample rod just below the hammer to calculate the maximum energy. To obtain the force and velocity, an instrumented rod is attached as part of the rod just below the anvil. The product of the force and velocity is integrated with respect to time to obtain the energy:

$$E(t) = \int F du = \int F V dt = E F V$$

The EFV method does not require any correction factors and is not influenced by variances in the cross section or loose joints in the drill rod. This method requires that the velocity be calculated by integrating the acceleration. The acceleration is measured using accelerometers. For some time, the accelerometer technology wasn't capable of measuring accelerations imparted during the SPT test accurately due to the steel on steel hammer impact. For this reason, a method known as the EF2 was commonly used. The EF2 method relies only on the force measurement and the properties of the drill rod to calculate the energy. This EF2 method required correction factors and the calculation is only accurate in the absence of upward traveling waves which are common due to non uniform rods and joints. Because accelerometer technology now allows for accurate measurement of the acceleration of the drill rod from the SPT hammer impact, the EF2 method is effectively obsolete and will not be discussed further.

2.2 Equipment

2.2.1 Instrumented Rod

Historically AHTD uses AWJ sampling rod to perform the SPT sampling on every rig except the CME-45 skid rig where AW rod is typically used. The only difference in AWJ and AW rod is the type of threads. The instrumented rod was manufactured by PDI, Inc. from a 2 foot piece of AWJ rod. The instrumented rod consists of a 2 foot section of AWJ drill rod with two strain gauges and 2 accelerometers mounted to it. The two strain gauges allow for the force to be calculated based on the cross sectional area of the rod and the elastic properties of the steel rod. Two accelerometers are bolted on opposite sides of the rod. The two accelerometers measure the acceleration and then the acceleration is integrated into velocity.

2.2.1.1 Strain Gauges

The two strain gauges are foil strain gauges (350 ohm) and are glued directly onto the rod in a full Wheatstone bridge arrangement. The strain gauges are on opposite sides of the rod so that any influence of bending can be taken out. Each strain bridge is terminated in a short cable with a quick disconnect plug.

2.2.1.2 Accelerometers

Two accelerometers are bolted on opposite sides of the rod. The acceleration is immediately integrated into velocity. The accelerometers are mounted on rigid aluminum blocks and are terminated in a short cable with a quick disconnect plug. The aluminum blocks are bolted to the instrumented rod section on opposite sides. Figure C-4 in Appendix C is a photo of the accelerometers being mounted to the instrumented rod.

2.2.2 Connections

All four of the strain gauges and accelerometers are connected by the quick connector plugs to a short connection cable which accepts up to four individual sensors and combines them into a single main cable. The main cable is then connected to the SPT Analyzer.

2.2.3 SPT Analyzer

The SPT Analyzer is a small portable unit which serves as a signal conditioning and processing unit. It is powered by 12 volt DC, either from an internal battery or from a 120 Volt AC main. The SPT Analyzer uses a touch screen interface for entry of project and boring descriptions, user comments, and data control and review. The SPT Analyzer displays graphic data and test results on an LCD screen as the test proceeds. Fig. C-2 in Appendix C shows a picture of the SPT Analyzer screen.

2.3 Training

The training was conducted by Jorge Beim of PDI, inc. on October 3^{rd} and 4^{th} 2006. The training consisted of a morning of classroom training, an afternoon of field testing, and then the following morning of data review back in the classroom. The training was held in the Materials Division training room and at the primary testing site. Because the workload at the time permitted it, both drill crews as well as the majority of the technical personnel from the Geotechnical Section were able to attend the entire training.

CHAPTER 3

Field Testing Program

3.1 Testing Locations

The primary test site is located under the I-440 Arkansas River Bridge between the south bank of the river and the first bridge bent south of the bank. The site is just to the west of the Little Rock Port Authority and is accessed through the Port Authority. Figure 3.1 shows the location of the primary test site. Although some challenging drilling conditions were encountered at this site, the site was convenient to the Materials Division Building, within Department right of way, and void of underground utility lines. Also, the bridge provided shelter from the rain and sun. Boring logs for borings conducted with the Failing 1500, CME-750, CME-75, and CME-850 describe the subsurface conditions at the primary site. These boring logs are included in Appendix B.

Figure 3.1 – Primary Test Site

A secondary site at the AHTD Equipment and Procurement (E&P) Annex was used for the testing of the CME-45 skid rig's hammer. This site is just east of the northeast corner of the gravel lot on the northeast corner of the E&P grounds. Figure 3.2 shows the location of the secondary test site. Although extremely convenient, this site had very limited overburden above the shale bedrock limiting the depth that testing could be performed to about 15 feet. Boring logs for borings CME-45-A and CME-45-B describe the subsurface conditions at the secondary site. These boring logs are included in Appendix B.

Figure 3.2 – Secondary Test Site

3.2 Field Testing – Phase I

Phase I of field testing was all performed at the primary test site. All components for the SPT energy measuring system had been purchased by AHTD from PDI, inc. However, at the time of the first phase of training, PDI, inc. had been delayed calibrating the strain gauges in new instrumented rods, so a temporary "loaner" rod was provided.

All 4 of the AHTD rigs that were in service at the time were tested. The CME 75 truck mounted drill rig had been ordered but had not been delivered at that time.

3.2.1 October 3, 2006

The first day of field testing, the CME 850 and the CME 750 were tested under the direction of Jorge Beim of PDI, inc. Energy measurements were taken for the entire duration of SPT tests conducted at depths of 20, 40, 60, 80, and 100 feet below the existing ground surface. One problem that was noted in the field during this first day of testing was that the accelerometers which were bolted to the instrumented rod had a tendency to become loose. It was believed that the results would still be usable when the velocities from the loose accelerometer were discarded. Both rigs were drilling at the same time and the testing equipment was alternated between the two rigs. This required separate files to be created for each SPT test. The 5 files for the tests performed on each rig were later joined into one file.

3.2.2 October 5, 2006

On the second day of the Phase I testing, both the Failing 1500 and the CME 45 skid rig were tested. The Failing 1500 was tested at 20, 40, 60, 80, and 100 feet, but the CME-45 was tested at 10, 20 30, 40, and 50 feet below the existing ground surface. The CME 45 has much more limited capabilities and struggled to reach the 50 foot depth. This rig is typically only used for shallow solid flight and hollow stem auger holes.

To keep the accelerometers from backing off, lock washers were installed on the bolts. Care was taken to ensure that they were totally compressed and provided at least as much surface contact as the bolt heads had previously to the outside of the accelerometers. The Energy Transfer Ratios calculated from these energy measurements were well in excess of 100%. Also, the accelerometers were giving significantly different readings for each blow. Because these results were believed to be in error, they were emailed to Jorge Beim at PDI's home office in Cleveland, Ohio. Based on PDI Personnel's review of the data, the accelerometers were sent in and exchanged for a different model.

3.3 Field Testing – Phase II

When the new accelerometers arrived, they had a wider housing through which the bolts had to go before threading into the instrumented rod. When an attempt was made to mount the accelerometers to the rod, they did not lie flat against the rod. Upon closer inspection, it was discovered that the threaded holes in the rod were not perpendicular to the axis of the rod. This is probably also the reason that the bolts were so prone to backing off during Phase I. After conversations with PDI about machining new threaded holes in the rod, it was decided that Phase II would be delayed until the new instrumented rod ordered by AHTD could be delivered.

Upon delivery of the new instrumented rod purchased by AHTD, the testing was performed on the various rigs when most convenient between other projects. Unfortunately during this span of about 8 months, all of the subsurface investigations for roadway cuts, embankments, and bridge structures were being performed in Northwest Arkansas primarily for the Bella Vista Bypass where bedrock is relatively shallow. For this reason, no testing was incorporated into routine subsurface investigation projects. The testing performed for the hammers on each rig will be discussed separately. Table 4.1 presents a summary of the drill rigs, hammers, and test borings.

3.3.1 Failing 1500

On November 21, 2006 AHTD personnel measured the energy of the Dietrich automatic hammer mounted on the Failing 1500 during SPT tests at depths of 20, 40, 60, 80, and 100 feet at the primary test site. The AHTD drill crew used rotary wash techniques with a bentonite slurry to maintain hole stability. Casing was limited to a very short piece of surface casing only. During the testing at the 80 foot depth, it was noted that accelerometer #2 became loose.

3.3.2 CME 750 All Terrain Rig

On December 4, 2006, AHTD personnel measured the energy of the CME automatic hammer mounted on the CME 750 during SPT tests at depths of 20, 40, 60, 80, and 100 feet at the primary test site. The AHTD drill crew set 10 feet of Hollow Stem Augers to "case" the near surface soils. The crew then advanced the hole using rotary wash techniques with a bentonite slurry to maintain hole stability.

3.3.3 CME 75 Truck Mounted Rig

On February 22, 2007 AHTD personnel measured the energy of the CME automatic hammer mounted on the CME 75 during SPT tests at depths of 20, 22, 40, 60, 80, and 100 feet at the primary test site. The crew set 10 feet of Hollow Stem Augers to "case" the near surface soils. The AHTD drill crew then advanced the hole using rotary wash techniques with a bentonite slurry to maintain hole stability. This was the first hole performed using the new, recently delivered 2006 model rig. Kurt Jagar with CME was on site during the drilling and testing which also served as part of the training that was specified for the new drill rig. During the SPT test at 20 feet, the hydraulic chuck release mechanism was left engaged which reduces the flow of hydraulic fluid to the SPT hammer hydraulic motor. It was obvious at the time that the fall of the hammer was reduced so the SPT test was repeated at 22 feet to replace the erroneous data.

3.3.4 CME 45 Skid Rig

On March 5, 2007 AHTD personnel measured the energy of the CME automatic hammer mounted on the CME 45 during SPT tests at depths of 3, 8, and 13 feet at the AHTD Equipment and Procurement Annex site. The AHTD drill crew advanced the hole using hollow stem augers. Drilling was performed at this alternative site due to the difficulties encountered during Phase I while rotary wash drilling at the primary test site. The less powerful pump (Moyno 3L6) and smaller diameter augers used by this rig created problems flushing the gravels out of the hole. Also, the shallower depths of 3, 8 and 13 feet are more representative of the depths of typical SPT testing for this rig. Shale was encountered during the 13 foot SPT test in the first boring (CME-45-A). In order to have energy measurement data from the same number of SPT tests as the other rigs, another hole (CME-45-B) was drilled approximately 5 feet away from the first.

3.3.5 CME 850

On July 17, 2007 AHTD personnel measured the energy of the CME automatic hammer mounted on the CME 850 during SPT tests at depths of 22, 40, 60, 80, and 100 feet at the primary test site. The crew set 10 feet of Hollow Stem Augers to "case" the near surface soils. The AHTD drill crew then advanced the hole using rotary wash techniques with a bentonite slurry to maintain hole stability. During the SPT test at 20 feet, the SPT Analyzer was not set to record data. For this reason, an additional test was performed at 22 feet to replace the missing data.

Drill Rig	Date	Hammer	Sample	Driller	Drilling	Slurry
	Tested	Туре	Rod		Method	
FAILING 1500	11/21/2007	Dietrich	AWJ	Donnie	Rotary	Bentonite
(1975)		Automatic		Thornton	Wash	
CME-750	12/4/2006	CME	AWJ	Daniel	Rotary	Bentonite
(1997)		Automatic		Dickerson	Wash	
CME-75	2/22/2007	CME	AWJ	Brian	Rotary	Bentonite
(2006)		Automatic		Casto	Wash	
CME-45	3/5/2007	CME	AWJ	Josh	Hollow Stem	N/A
(1986)		Automatic		Higginbottom	Auger	(dry)
CME-850	7/17/2007	CME	AWJ	Gary	Rotary	Bentonite
(2001)		Automatic		Brown	Wash	

Table 4.1 – Summary of Drill Rigs, Hammers, and Test Borings for Phase II

CHAPTER 4

Data Analysis

4.1 Data Quality Evaluation

All data was downloaded from the SPT Analyzer to an AHTD server. Each recorded blow was evaluated to determine if it was a full hammer blow. Frequently at the end of the SPT test, the driller shuts down the hammer late enough in the hammer cycle that a partial blow occurs. Additionally, if the data collection is begun before the hammer is placed on the anvil, the sensors may record this as a low energy blow. All of these "accidental" partial blows were deleted. Each remaining blow was evaluated for quality based on several factors. The agreement between the two velocities integrated from the accelerometers and the agreement between the two force measurements calculated from the two strain gauges was evaluated. Ideally, the value of both V1/V2 and F1/F2 are 1.00 indicating agreement between the accelerations measured in both accelerometers and the strain measurements in both strain gauges. With the second set of accelerometers, the ratios of V1/V2 and F1/F2 were typically well within an acceptable range indicating good consistency between the sensors. The only exceptions came during the 80 foot test with the Failing-1500. As this test was being performed, one of the Accelerometers, A2, became loose. This was documented during the field testing and clearly visible in the data. During these blows, Accelerometer 2 provided unusable data that had to be excluded. Only data from Accelerometer 1 was used for these blows to determine the velocity component of the energy calculation. Table 4.1 summarizes the values of these quality control parameters.

	V1/V2				F1/F2				
Drill Rig	Average	Max.	Min.	Standard Deviation	Average	Max.	Min.	Standard Deviation	
Failing-1500	1.00	1.14	0.85	0.07	1.00	1.05	0.95	0.02	
CME-750	0.99	1.06	0.92	0.03	1.00	1.05	0.95	0.02	
CME-75	1.00	1.05	0.95	0.02	1.04	1.24	0.95	0.03	
CME-45	0.98	1.05	0.91	0.03	0.98	1.02	0.93	0.02	
CME-850	1.03	1.14	0.95	0.03	1.06	1.16	1.00	0.04	

Table 4.1 – Data Quality Control Parameters

4.2 Data Adjustment

The peak in the velocity curve and the peak in the force curve should occur at the same time. One standard adjustment that is made in the data is for the velocity to be shifted relative to the force in time. Figure 4.1 shows the plot of a single blow before the velocity was shifted relative to the force in time, and Figure 4.2 shows the same blow after the velocity was shifted. The peaks in the force and velocity curves line up much better after the velocity was shifted.

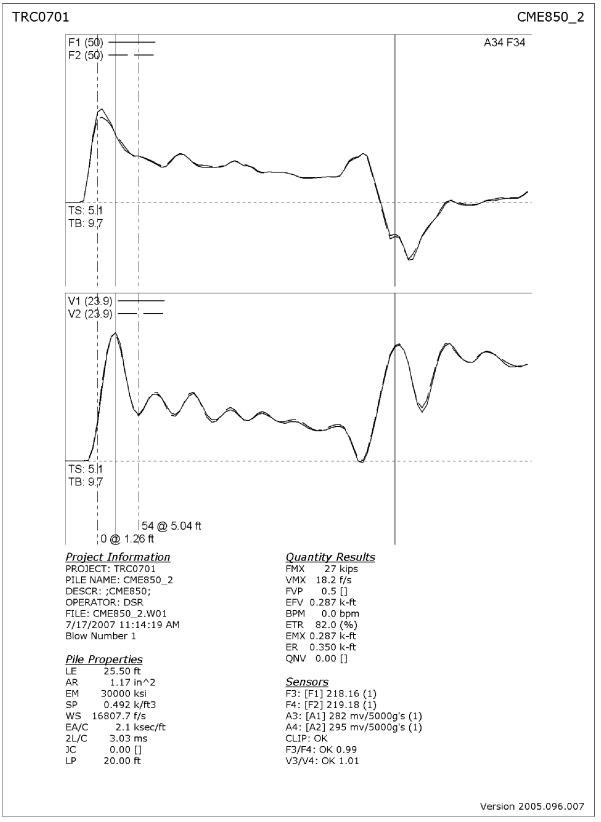


Figure 4.1 – Plot of Representative Blow Prior to Velocity Shift

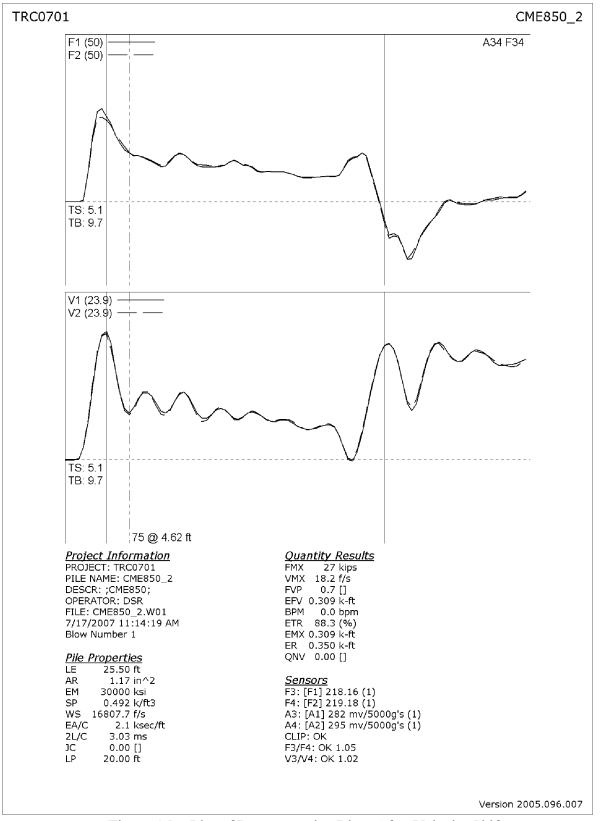


Figure 4.2 – Plot of Representative Blow After Velocity Shift

This adjustment is commonly needed to reduce apparent phase shifts in the data and is recommended good practice (PDA-W). This adjustment should typically not exceed 2.0 time increments (SPT Analyzer). Table 4.2 gives the values by which the velocity was shifted for each of the hammers and the corresponding effect on the average maximum velocity (VMX), energy (EFV), and the energy transfer ratio (ETR).

		<i>,,</i>	0,	· /
Hammer System	Velocity Shift	VMX	EFV	ETR
Failing-1500	-1.8	-0.175	+0.020	+5.69%
CME-750	-1.8	-0.200	+0.010	2.55%
CME-75	-0.5	-0.246	+0.002	+0.59%
CME-45	0.0	0.000	0.000	0.00%
CME-850	-2.0	-0.0024	+0.0197	+5.61%

Table 4.2 – Velocity Shift and Effect on Data

Another adjustment that was deemed appropriate involved the reduction of some of the velocities obtained from the accelerometers. For a uniform cross section, good data should have reasonable proportionality between the force and velocity at the first peak (PDA Help). Although the sample rod will not have a truly uniform cross section due to the joints present every 10 feet as well as small variations in the rod wall thickness, the velocity measurements for some of the hammers were considered to be disproportionably high when compared to the force measurements. For this reason the velocity replay factors RV1 and RV2 were adjusted until the proportionality was within acceptable limits. The default velocity replay factor is 1.0. The replay factor for the CME 750 data and much of the CME 45 data was kept at 1.0. However, the velocity replay factor for the remaining data was adjusted to values ranging from 0.8 to 0.9. The measured velocity for the hammer blow is simply multiplied by this replay factor. Since all adjusted replay factors are less than 1.0, both the velocities and the resulting calculated hammer efficiencies are reduced. Table 4.3 shows the replay factors applied to the velocities and the corresponding effect on the average maximum velocity (VMX), energy (EFV), and the energy transfer ratio (ETR).

Hammer System	Velocity Replay	VMX	EFV	ETR
	Factor			
Failing-1500	0.85	-3.946	-0.056	-16.1%
CME-750	1.00	0.000	0.000	0.00%
CME-75	0.90	-1.590	-0.032	-9.31%
CME-45	0.90*	-0.550	-0.010	-2.98%
CME-850	0.80	-3.959	-0.068	-19.37%

* Applied to last 2 SPT tests only

Table 4.3 – Velocity Replay Factor and Effect on Data

4.3 Correction Factors

Sixty percent is considered the standard energy transfer for the SPT test. The correction factor to standardize the SPT N-values to 60 percent energy is simply the ratio of the actual hammer energy transfer ratio to 60 percent, or:

$$CorrectionFactor = \frac{ETR(\%)}{60\%}$$

The uncorrected field SPT N-values (N_f) can then be corrected to the corresponding N-value at 60% energy (N_{60}) by multiplying by the Correction Factor:

$$N_{60} = N_f \times CorrectionFactor$$

The average ETR was calculated based on all the acceptable blows recorded for each hammer system. The blows occurring during the six inch seating interval as well as both six inch increments that would count toward the SPT N-value were used in the analysis. With the method of energy measurement being used, there is no reason the energy or energy measurements should be any different for the seating blows as compared to the other intervals. Using all the blows increases the data set, giving more confidence in the computed averages. This average ETR was used to calculate a correction factor for each hammer system. Table 5.3 provides the average ETR for each of the hammer systems, the standard deviation, and the corresponding correction factor.

		Average ETR	Standard Deviation	Correction Factor
FAILING 1500	Dietrich	79.1	6.56	1.32
(1975)	Automatic			
CME-750	CME	76.9	3.90	1.28
(1997)	Automatic			
CME-75	CME	83.0	2.23	1.38
(2006)	Automatic			
CME-45	CME	85.3	4.74	1.42
(1986)	Automatic			
CME-850	CME	77.5	1.84	1.29
(2001)	Automatic			

Table 4.4 – Average ETR and Corresponding Correction Factor

4.4 Comparison of N₆₀'s

In theory, the N_{60} values at each depth should be more consistent than the raw field N-values (N_f). This is based on the assumption that the subsurface stratigraphy is consistent across the site in both material type and density or consistency. Data from the CME-45 testing cannot be included in this comparison because it was performed at a different site. Also, at the primary testing site, the SPT testing at the 80 and 100 foot

depths encountered varying amounts of gravel and varying degrees of cementation resulting in very high N-values and refusal. For this reason, only the test results from the 20, 40, and 60 foot depths are worthy of evaluation. Figure 4.3 and Figure 4.4 present the relationships between the field N-Values and between the N₆₀ values, respectively, for the AHTD hammers.

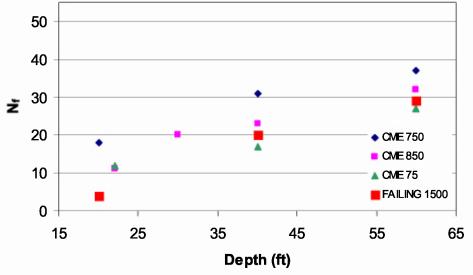


Figure 4.3 – Field N-Value (N_f) vs. Depth

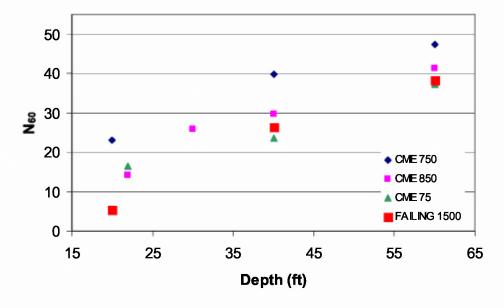


Figure 4.4 – Corrected N-Value (N₆₀) vs. Depth

Although all borings were performed in a relatively small area, the site was more variable between borings than desirable for this comparison. This is supported by the differences in field N-values between tests performed during Phase I and Phase II at the

same depth using the same hammer. Figure 4.5 shows the field N-Values for the tests performed using the CME-750 hammer during Phase I and Phase II testing.

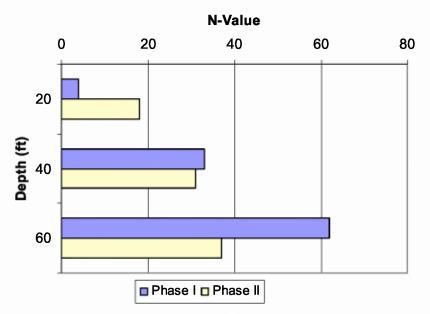
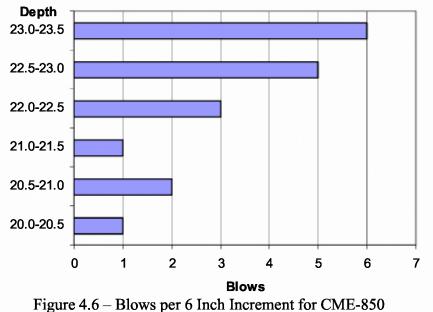



Figure 4.5 – Field N-Values for CME-750 during Phase I and Phase II

Even in a single boring performed by the CME-850, the N-values varied greatly between depths of 20.0 and 23.5 feet showing the high variability in the densities of the soils at the site with depth. Figure 4.6 presents the blows for each six inch increment for these depths.

4.5 Comparison to Similar Hammers

Agency	Tested	Hammer	Reported ETR's			Reported	Comments
	By	Туре	Low	High	Average	By	
Washington	GRL	CME	*	*	77%	Lamb	Multiple
DOT		Automatics				(1997)	Hammers
Oregon	GRL	CME	78%	82%	*	*	Multiple
DOT		Automatics					Hammers
Minnesota	*	CME	76%	94%	80%	Lamb	1 Hammer
DOT		Automatic				(1997)	
Florida	*	Automatics	*	*	83.2%	Davidson	Numerous
DOT &						et.al	Hammers
Consultants						(1999)	
Maryland	MD	CME	77.2%	89.36	81.4%	Aggour	1 Hammer
DOT	DOT	Automatic				and	
						Radding	
						(2001)	

Table 4.5 provides a summary of the reported energy transfer ratios for SPT hammers similar to those used by AHTD.

* Data Not Available

Table 4.5 – Reported Energy Transfer Ratios of Automatic Hammers, per Aggour and Radding (2001)

The average energy transfer ratios reported in Table 4.4 appear very reasonable when compared to the energy transfer ratios in Table 4.5 reported for similar hammers in other states.

CHAPTER 5

Conclusions and Recommendations

5.1 Conclusions

Many different SPT equipment related factors introduce variability into the resulting N-value. One of the most influential factors is the hammer energy. Different types of hammers deliver different amounts of energy into the sampling rod. In order to standardize the N-value based on the hammer energy, the N-value can be corrected to N_{60} . N_{60} is the N-value that would have occurred if the hammer had been transferring 60% of the maximum theoretical energy into the sample rod. The standard of 60% is used because researchers have come to relative agreement that this is the average amount of energy on which most of the correlations between the N-value and the engineering properties of soils are based.

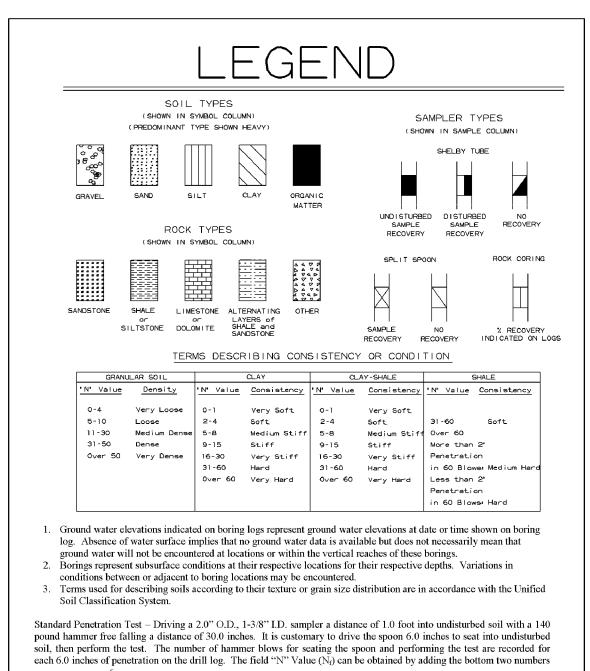
The standardization to N_{60} is achieved by multiplying the measured field N-value by a correction factor. The correction factor is the actual hammer efficiency in percent divided by 60. In order to obtain the actual hammer efficiencies of each of the 5 AHTD hammers, the energies of each of the hammers were measured using an SPT Analyzer purchased from Pile Dynamics, Inc. Five SPT's were performed with each of the rigs. With the exception of the CME-45, all rigs were tested at the same site at depths of approximately 20, 40, 60, 80, and 100 feet. The energy transmitted into the rod was measured on every blow during each of the five SPT's. Comparisons of field and corrected N-values at each depth are concluded to lack merit due to the variability of the site in gravel content and soil density. These two factors even had great influence on the N-values of the same hammer at small changes in depth and in the N value of the same hammer in different holes at the same depth.

Published correction factors for automatic hammers like the ones AHTD uses range from 0.8 to 1.67 (Aggour and Radding 2001). All of the correction factors calculated using the average measured efficiencies fall within this range of values. Automatic hammers are advantageous to other hammer types because the hydraulics lift the hammer making the hammer energy much less affected by the operator's technique and fatigue level than other hammer systems.

5.2 Recommendations

5.2.1 Immediate Action

Of all the corrections that have been recommended for application to the SPT N-value, the correction for the energy of the hammer has the most significant impact on the N-value. By comparison, most of the other corrections are relatively minor. Because the correction for hammer energy has such a significant impact on the N-value, the following recommendations are considered appropriate for AHTD to implement immediately:


- The recommended correction factor as provided in Table 5.1 for the particular hammer used should be placed on each boring log. Figure 5.1 shows an example boring log with this information added. Also, an explanation of how to apply this correction factor should be added to the legend that accompanies the boring logs. Figure 5.2 shows the legend with this explanation added.
- The energy of each hammer should be measured periodically to ensure that the hammer's energy hasn't changed due to equipment wear or other factors. The frequency should depend upon the use of the hammer systems. Annual measurements would be recommended for equipment under frequent use.
- The energy of a hammer should be tested after the hammer has had any significant maintenance or repairs performed.

Drill Rig	Hammer	Recommended
		Correction
		Factor
FAILING 1500	Dietrich	1.32
(1975)	Automatic	
CME-750	CME	1.28
(1997)	Automatic	
CME-75	CME	1.38
(2006)	Automatic	
CME-45	CME	1.42
(1986)	Automatic	
CME-850	CME	1.29
(2001)	Automatic	

 Table 5.1 – Correction Factors Recommended for Use

			HWY. & TRANS. DEPARTMENT			BORIN								
JOB N			DIVISION - GEOTECHNICAL SEC. 090224 Benton Co CORRECTION			PAGE DATE:	1	0	Fαc Ma		, 200	7		
JOB N						FYPE O	FDR	ILLING			ow S		Aug	er
			U.S. 71										0	
STATI	ON:		881+15		\searrow	EQUIPM	ENT	: CM	E 75	50 w.	/ CM	ΕA	utom	atic
LOCA	TION		102' Left of Center Line of Median		1						amm	ıer		
			osh Higginbottom]	HAMME	R CO	DRREC	TION	FAC	FOR:		1.25	
COM	PLET		N DEPTH: 51.3											
D	s	S												
E P	Y	A M							L.	F.	S		%	%
Τ	М	P	DESCRIPTION OF MATERIAL		DIL				GHJ	- ID	§		S	R
н	B O	L		GI	ROUP	2	IST.	A.	VEI	ER	F B]	Ä	C R	Q D
	Ľ	E				PLASTIC	% MOIST.	LIMIT	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
FT.		S	SURFACE ELEVATION: 1357.7				%	27	ã	LE	ž	PE		
	K.													
L	XX					1								
	30					1								
5	é/	\mathbf{N}										4		
	S.	КÀ									25-	-29		
	\$ ` \$		Moist, Hard, Reddish Brown Gravelly (Chert											
	6.0		Fragments) Clay											
10		\bigtriangledown										9		
	<u>~</u> ~	\square									34-	-19		
	્રિ													
	¢X													
15	000	\mathbb{N}		1							<u></u>	-		
	Z?	\mapsto									10	-8		
	S.		Moist, Very Stiff, Reddish Brown Gravelly (Chert Fragments) Clay											
	X		Taginents) Clay											
	X											_		
20	200	\mathbb{N}									1 23-	2 18		
$\vdash \dashv$	~Z^	\vdash	Melet Dense Baddish Brown and Orac Ol								23-	- 10		
\vdash –	8 7 %		Moist, Dense, Reddish Brown and Gray Clayey Gravel (Chert Fragments)											
\vdash	(X)		Claron (Chort Hugmonita)											
<u> </u>	<u>1 X</u>													
25		X									<u>8</u>	3-6		
$\vdash \dashv$	Z?	\vdash	Moist, Stiff, Reddish Brown Gravelly (Chert									•		
┝╺┥	S)X		Fragments) Clay											
⊢ –∤	۲Å		J,,											
	<u>ککر</u>										.			
30		X									4	3 -7		
┝ ┥	Š	M	Moist, Medium Dense, Reddish Brown and Gray									-		
┝─┥	Ň		Clayey Gravel (Chert Fragments)											
	(À													
	ľ¥,										.			
35 DEM		\bowtie	Drilling circulation fluid loss was encountered from		21.14	<u> </u>						3		
		<i>.</i> .				5								

Figure 5.1 – Example Boring Log with Correction Factor

for example: $\frac{6}{8-9} \Rightarrow 8+9 = 17b lows / ft$ The "N" Value corrected to 60% efficiency (N₆₀) can be obtained by

multiplying Nf by the hammer correction factor published on the boring log.

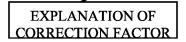


Figure 5.2 – Legend with Explanation of Correction Factor

5.2.2 Potential Future Action

Several options for standardizing blow counts have been suggested in the literature. Table 5.2 gives three possible options and some of the advantages and disadvantages associated with each one.

Options of Standardizing	Advantages	Disadvantages
Blow Counts to N60		
Multipy N values by	No changes to	Creates extra office work
correction factors and	equipment, data on	
showing corrected N values	final boring log is	
on final boring logs	correct	
Provide correction factor on	No changes to	Puts responsibility of
boring logs and let users	equipment, simple	correcting N values on
adjust N values	change to final boring	boring log users
	log	
Calibrate hammer systems	No changes to boring	Not in compliance with
in field to provide average	log, field data and final	current ASTM standard,
transferred energy efficiency	boring log data is	change in equipment
of 60%	correct	necessary

Table 5.2 – Options for Correcting Blow Counts (Lamb 1997)

Although the option of altering the hammers to provide an average transferred energy efficiency of 60% is probably the simplest long term approach, it takes the SPT out of compliance with the current ASTM and AASHTO standards. Additionally, it may require further alterations to equipment or correction factors to account for future equipment wear. Due to these factors and its unproven nature, this approach is not recommended for AHTD at this time.

AHTD final boring logs currently show the number of blows for each of the three 6 inch increments. The last two must be added together to obtain the N-value. AHTD currently uses Logdraft software manufactured by Geosystems, inc. to generate the final boring logs. AHTD could leave the field blow counts on the logs and add another column where the corrected N-value (N_{60}) would be automatically generated by the software. For each subsurface investigation performed for a proposed bridge structure, another format of the boring logs and N-values are generated to be placed on the bridge layout in the final plans. The generation of these logs and N-values is currently automated. This process could be revised to provide the N_{60} values. A standard note would then need to be placed on the layout sheet to explain that the values present have been corrected to 60% of the maximum theoretical energy. These slight adaptations in the software and process already in use could save AHTD personnel significant amounts of effort in the future while providing a more consistent representation of the conditions at the site.

Bibliography

- Aggour, M.S. and Radding, R., *Standard Penetration Test (SPT) Correction*, Final Report, Department of Civil and Environmental Engineering, University of Maryland, For Maryland Department of Transportation, September 2001.
- ASTM D 1586-99 Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils.
- Bowles, J. E. (1996), Foundation Analysis and Design, 5th ed., McGraw-Hill.
- Davidson, J. L., Maultsby, J. P. and Spoor, K. B., *Standard Penetration Test Energy Calibrations*, Final report, Department of Civil Engineering, University of Florida, For Florida Department of Transportation, January 1999.
- Lamb, R., SPT Measurements with the PDA, 45th Annual Geotechnical Engineering Conference at the University of Minnesota, 1997.
- Pile Dynamics, Inc., PDA-W Manual of Operations, Cleveland, OH, January 2004.
- Pile Dynamics, Inc., SPT Analyzer Users Manual, Cleveland, OH, June 1999.

Appendix A FIELD ENERGY MEASUREMENT DATA

	1.17 inches [^]	2 Area				
	0.492083 kips/fee	t^3 Specific Weight Density	DEPTH	Ν	AVE. ETR	STDEV
	16807.7 feet/sec	on Wave Speed	(ft)	(bpf)	(%)	of ETR
	29999.6 ksi	Elastic Modulus	20.0-21.5	4	72.9	4.3
			40.0-41.5	20	80.2	1.8
F3	F1	218.16	60.0-61.5	29	78.4	2.7
F4	F2	219.18	80.0-81.0	60/6"	78.4	9.5
			100.0-100.8	52/4"	80.0	4.8
A3	A1	282	ALL E	BLOWS	79.1	6.56
A4	A2	295				

ΡN

Failing 1500 1975 Failing 1500 (AHTD EQUIP #8569); Dietrich Automatic Hammer Driller - Donnie Thornton; SPT analyzer - David Ross PD

OP

Date	Time	LP	DEPTH	Ν	BN	BPM	FMX	VMX	EFV	ETR
		feet	feet	bpf		blows/min	kips	feet/second	kip-feet	(%)
11/21/2006	10:07:20	23.5	20.0-20.5	4	2	0.0	28	15.2	0.244	69.8
11/21/2006	10:07:23	23.5	20.5-21.0	4	4	37.5	29	15.7	0.266	75.9
11/21/2006	11:06:23	43.5	40.0-40.5	20	2	0.0	29	16.0	0.280	80.1
11/21/2006	11:06:26	43.5	40.0-40.5	20	4	37.3	29	16.3	0.294	84.0
11/21/2006	11:06:29	43.5	40.0-40.5	20	6	37.3	28	15.8	0.293	83.7
11/21/2006	11:06:33	43.5	40.0-40.5	20	8	37.5	28	16.0	0.283	80.8
11/21/2006	11:06:36	43.5	40.5-41.0	20	10	37.3	28	16.3	0.286	81.6
11/21/2006	11:06:39	43.5	40.5-41.0	20	12	37.6	28	15.9	0.279	79.7
11/21/2006	11:06:42	43.5	40.5-41.0	20	14	37.5	28	15.7	0.276	78.9
11/21/2006	11:06:45	43.5	40.5-41.0	20	16	37.6	29	15.9	0.274	78.2
11/21/2006	11:06:48	43.5	41.0-41.5	20	18	37.6	28	16.1	0.276	78.9
11/21/2006	11:06:51	43.5	41.0-41.5	20	20	37.5	28	16.0	0.277	79.2
11/21/2006	11:06:55	43.5	41.0-41.5	20	22	37.6	28	15.9	0.277	79.2
11/21/2006	11:06:58	43.5	41.0-41.5	20	24	37.6	28	15.9	0.278	79.3
11/21/2006	11:07:01	43.5	41.0-41.5	20	26	37.4	28	15.7	0.277	79.1
11/21/2006	11:35:46	63.5	60.0-60.5	29	28	0.0	29	16.5	0.289	82.5
11/21/2006	11:35:50	63.5	60.0-60.5	29	30	38.1	31	15.7	0.295	84.4
11/21/2006	11:35:53	63.5	60.0-60.5	29	32	38.1	31	15.2	0.285	81.4
11/21/2006	11:35:56	63.5	60.0-60.5	29	34	37.8	30	14.6	0.276	79.0
11/21/2006	11:35:59	63.5	60.0-60.5	29	36	37.9	30	14.9	0.275	78.5
11/21/2006	11:36:02	63.5	60.5-61.0	29	38	38.2	30	15.1	0.271	77.4
11/21/2006	11:36:05	63.5	60.5-61.0	29	40	38.3	30	15.1	0.275	78.6
11/21/2006	11:36:08	63.5	60.5-61.0	29	42	38.3	30	15.2	0.279	79.6
11/21/2006	11:36:11	63.5	60.5-61.0	29	44	38.3	30	15.2	0.275	78.6
11/21/2006	11:36:14	63.5	60.5-61.0	29	46	38.2	29	15.3	0.268	76.7
11/21/2006	11:36:17	63.5	60.5-61.0	29	48	37.9	29	14.9	0.266	76.1
11/21/2006	11:36:20	63.5	60.5-61.0	29	50	38.2	30	15.0	0.271	77.4
11/21/2006	11:36:24	63.5	61.0-61.5	29	52	38.0	30	15.0	0.273	78.0
11/21/2006	11:36:27	63.5	61.0-61.5	29	54	38.4	30	15.0	0.263	75.3
11/21/2006	11:36:30	63.5	61.0-61.5	29	56	38.2	29	14.7	0.257	73.3
11/21/2006	11:36:33	63.5	61.0-61.5	29	58	38.1	30	15.5	0.274	78.3
11/21/2006	11:36:36	63.5	61.0-61.5	29	60	37.9	29	15.1	0.276	78.9
11/21/2006	11:36:39	63.5	61.0-61.5	29	62	38.1	29	15.3	0.272	77.6

11/21/2006	11:36:42	63.5	61.0-61.5	29	64	37.9	29	15.1	0.259	73.9
11/21/2006	11:36:45	63.5	61.0-61.5	29	66	38.2	30	15.2	0.287	81.9
11/21/2006	12:25:10	83.5	80.0-80.5	60/6"	68	34.4	28	16.3	0.289	82.5
11/21/2006	12:25:13	83.5	80.0-80.5	60/6"	70	37.9	29	16.4	0.302	86.2
11/21/2006	12:25:16	83.5	80.0-80.5	60/6"	72	38.1	29	16.7	0.301	86.0
11/21/2006	12:25:19	83.5	80.0-80.5	60/6"	74	38.1	29	17.0	0.309	88.4
11/21/2006	12:25:22	83.5	80.0-80.5	60/6"	76	38.1	29	17.0	0.304	86.7
11/21/2006	12:25:25	83.5	80.0-80.5	60/6"	78	38.1	28	16.4	0.288	82.2
11/21/2006	12:25:28	83.5	80.0-80.5	60/6"	80	38.1	28	16.2	0.286	81.6
11/21/2006	12:25:31	83.5	80.0-80.5	60/6"	82	38.5	29	17.1	0.302	86.2
11/21/2006	12:25:34	83.5	80.0-80.5	60/6"	84	38.7	28	16.6	0.287	82.1
11/21/2006	12:25:37	83.5	80.0-80.5	60/6"	86	38.5	29	17.4	0.302	86.3
11/21/2006	12:25:40	83.5	80.0-80.5	60/6"	88	38.4	28	16.4	0.288	82.3
11/21/2006	12:25:44	83.5	80.0-80.5	60/6"	90	38.5	28	16.6	0.288	82.2
11/21/2006	12:25:44	83.5	80.0-80.5	60/6"	90 92	38.9	28	15.9	0.200	78.8
11/21/2006	12:25:50	83.5 83.5	80.5-80.5	60/6"	92 94	39.0	20 29	16.2	0.270	83.0
11/21/2006	12:25:56	83.5	80.5-81.0	60/6"	96 08	37.9	28	16.5	0.291	83.0
11/21/2006	12:25:59	83.5	80.5-81.0	60/6"	98	37.5	28	15.7	0.283	80.9
11/21/2006	12:26:02	83.5	80.5-81.0	60/6"	100	37.5	29	16.4	0.302	86.2
11/21/2006	12:26:05	83.5	80.5-81.0	60/6"	102	37.6	29	16.7	0.305	87.0
11/21/2006	12:26:08	83.5	80.5-81.0	60/6"	104	37.9	29	16.4	0.299	85.4
11/21/2006	12:26:11	83.5	80.5-81.0	60/6"	106	38.2	29	16.6	0.309	88.3
11/21/2006	12:26:14	83.5	80.5-81.0	60/6"	108	37.7	29	16.1	0.301	86.1
11/21/2006	12:26:18	83.5	80.5-81.0	60/6"	110	38.1	30	16.9	0.325	92.9
11/21/2006	12:26:21	83.5	80.5-81.0	60/6"	112	38.2	29	16.3	0.312	89.2
11/21/2006	12:26:24	83.5	80.5-81.0	60/6"	114	38.2	29	16.4	0.308	88.1
11/21/2006	12:26:27	83.5	80.5-81.0	60/6"	116	38.4	28	15.6	0.293	83.6
11/21/2006	12:26:30	83.5	80.5-81.0	60/6"	118	38.1	27	14.8	0.276	78.9
11/21/2006	12:26:33	83.5	80.5-81.0	60/6"	120	38.1	28	16.6	0.295	84.3
11/21/2006	12:26:36	83.5	80.5-81.0	60/6"	122	39.3	26	17.0	0.270	77.2
11/21/2006	12:26:39	83.5	80.5-81.0	60/6"	124	38.4	28	18.4	0.304	87.0
11/21/2006	12:26:42	83.5	80.5-81.0	60/6"	126	38.3	28	11.9	0.254	72.6
11/21/2006	12:26:45	83.5	80.5-81.0	60/6"	128	38.4	27	10.4	0.236	67.6
11/21/2006	12:26:48	83.5	80.5-81.0	60/6"	130	39.2	27	9.6	0.225	64.1
11/21/2006	12:26:52	83.5	80.5-81.0	60/6"	132	38.5	28	10.6	0.259	74.1
11/21/2006	12:26:55	83.5	80.5-81.0	60/6"	134	38.5	28	10.9	0.260	74.3
11/21/2006	12:26:58	83.5	80.5-81.0	60/6"	136	38.6	28	10.6	0.254	72.5
11/21/2006	12:27:01	83.5	80.5-81.0	60/6"	138	38.5	28	10.4	0.242	69.1
11/21/2006	12:27:04	83.5	80.5-81.0	60/6"	140	38.3	25	8.6	0.210	60.1
11/21/2006	12:27:07	83.5	80.5-81.0	60/6"	142	38.2	27	9.7	0.230	65.6
11/21/2006	12:27:10	83.5	80.5-81.0	60/6"	144	37.8	26	9.4	0.213	61.0
11/21/2006	12:27:13	83.5	80.5-81.0	60/6"	146	37.8	26	9.4	0.216	61.7
11/21/2006	12:27:16	83.5	80.5-81.0	60/6"	148	38.1	27	10.7	0.228	65.3
11/21/2006	12:27:19	83.5	80.5-81.0	60/6"	150	38.3	27	10.1	0.215	61.6
11/21/2006	12:27:22	83.5	80.5-81.0	60/6"	152	37.0	26	9.8	0.224	64.1
11/21/2006	12:27:26	83.5	80.5-81.0	60/6"	154	38.3	27	9.9	0.226	64.7
11/21/2006	14:51:36	103.5	100.0-100.5		2	34.6	28	16.4	0.285	81.4
11/21/2006	14:51:39	103.5	100.0-100.5		4	37.7	28	16.8	0.296	84.6
11/21/2006	14:51:42	103.5	100.0-100.5		6	37.8	28	17.0	0.293	83.8
11/21/2006	14:51:45	103.5	100.0-100.5		8	38.0	28	17.0	0.290	82.9
11/21/2006	14:51:48	103.5	100.0-100.5		10	37.9	28	17.0	0.298	85.2
11/21/2006	14:51:51	103.5	100.0-100.5		12	37.9	28	16.9	0.286	81.7
11/21/2000	17.01.01	100.0	100.0-100.0	0214	14	01.3	20	10.3	0.200	51.7

11/21/2006	14:51:54	103.5	100.0-100.5	52/4"	14	37.6	27	16.6	0.276	78.9
11/21/2006	14:51:58	103.5	100.0-100.5	52/4"	16	38.2	28	17.5	0.294	84.0
11/21/2006	14:52:01	103.5	100.0-100.5	52/4"	18	38.0	27	16.3	0.271	77.5
11/21/2006	14:52:04	103.5	100.0-100.5	52/4"	20	38.4	28	16.9	0.287	81.9
11/21/2006	14:52:07	103.5	100.0-100.5	52/4"	22	38.2	27	16.8	0.274	78.4
11/21/2006	14:52:10	103.5	100.0-100.5	52/4"	24	38.1	27	15.9	0.274	78.3
11/21/2006	14:52:13	103.5	100.0-100.5	52/4"	26	38.3	27	16.6	0.277	79.1
11/21/2006	14:52:16	103.5	100.0-100.5	52/4"	28	38.2	28	16.4	0.278	79.5
11/21/2006	14:52:19	103.5	100.0-100.5	52/4"	30	38.4	27	16.6	0.276	78.9
11/21/2006	14:52:22	103.5	100.0-100.5	52/4"	32	38.1	27	16.6	0.279	79.7
11/21/2006	14:52:25	103.5	100.0-100.5	52/4"	34	38.3	27	16.8	0.282	80.6
11/21/2006	14:52:28	103.5	100.0-100.5	52/4"	36	38.3	26	16.3	0.266	76.0
11/21/2006	14:52:31	103.5	100.5-100.8	52/4"	38	38.3	27	16.8	0.278	79.4
11/21/2006	14:52:34	103.5	100.5-100.8	52/4"	40	38.6	27	16.4	0.277	79.0
11/21/2006	14:52:37	103.5	100.5-100.8	52/4"	42	38.6	27	16.7	0.278	79.4
11/21/2006	14:52:41	103.5	100.5-100.8	52/4"	44	38.5	26	16.6	0.266	76.0
11/21/2006	14:52:44	103.5	100.5-100.8	52/4"	46	38.5	27	16.3	0.270	77.1
11/21/2006	14:52:47	103.5	100.5-100.8	52/4"	48	38.4	26	15.9	0.255	73.0
11/21/2006	14:52:50	103.5	100.5-100.8	52/4"	50	38.1	26	16.1	0.256	73.0
11/21/2006	14:52:53	103.5	100.5-100.8	52/4"	52	38.2	27	15.8	0.263	75.0
11/21/2006	14:52:56	103.5	100.5-100.8	52/4"	54	38.4	26	16.9	0.268	76.5
11/21/2006	14:52:59	103.5	100.5-100.8	52/4"	56	38.5	27	15.2	0.243	69.6
11/21/2006	14:53:02	103.5	100.5-100.8	52/4"	58	37.4	25	15.4	0.244	69.7
11/21/2006	14:53:05	103.5	100.5-100.8	52/4"	60	37.7	25	15.7	0.247	70.5
11/21/2006	14:53:08	103.5	100.5-100.8	52/4"	62	38.0	28	16.4	0.286	81.6
11/21/2006	14:53:11	103.5	100.5-100.8	52/4"	64	37.9	27	17.2	0.280	80.1
11/21/2006	14:53:14	103.5	100.5-100.8	52/4"	66	37.6	29	16.2	0.295	84.2
11/21/2006	14:53:18	103.5	100.5-100.8	52/4"	68	37.5	29	16.9	0.300	85.7
11/21/2006	14:53:21	103.5	100.5-100.8		70	38.1	29	17.3	0.308	88.1
11/21/2006	14:53:24	103.5	100.5-100.8	52/4"	72	38.0	30	16.6	0.304	86.7
11/21/2006	14:53:27	103.5	100.5-100.8		74	38.0	30	17.1	0.313	89.5
11/21/2006	14:53:30	103.5	100.5-100.8	52/4"	76	38.0	29	17.6	0.301	86.1
11/21/2006	14:53:33	103.5	100.5-100.8	52/4"	78	38.1	27	17.4	0.282	80.6
11/21/2006	14:53:36	103.5	100.5-100.8	52/4"	80	38.0	26	16.6	0.259	74.1
11/21/2006	14:53:39	103.5	100.5-100.8		82	38.2	27	17.6	0.294	83.9
11/21/2006	14:53:43	103.5	100.5-100.8		84	38.3	28	17.4	0.294	84.0
11/21/2006	14:53:46	103.5	100.5-100.8	52/4"	86	38.4	28	17.8	0.294	84.1

* Results based solely on V1 from Accelerometer #1 because Accelerometer #2 was loose

	1.17 inches [^]	2 Area					
0.492	083 kips/fee	t^3 Specific Weight Density		DEPTH	Ν	AVE. ETR	STDEV
168	07.7 feet/sec	on Wave Speed	(ft)	(bpf)	(%)	of ETR	
299	99.6 ksi	Elastic Modulus		20.0-21.5	18	73.3	5.44
Strain	Gauge Calib	ration Factors		40.0-41.5	31	76.9	4.17
F3	F1	218.16		60.0-61.5	37	76.8	2.90
F4	F2	219.18		80.0-80.8	28/3"	75.7	3.96
Accele	rometer Cali	bration Factors		100.0-100.4	60/5"	79.2	2.45
A3	A1	282		ALL BL	.ows	76.9	3.90
A4	A2	295					

ΡJ TRC0701

ΡN CME-AT2

1997 CME-750 (AHTD EQUIP #2300); CME Automatic Hammer DRILLER - Daniel Dickerson; SPT Analyzer - David Ross PD

OP

Date	Time	LP	DEPTH	Ν	BN	BPM	FMX	VMX	EFV	ETR
		feet	feet	(bpf)		blows/min	kips f	eet/seconc	kip-feet	(%)
12/4/2006	15:12:07	25.5	20.0-20.5	18	2	59.9	25	14.50	0.244	69.7
12/4/2006	15:12:09	25.5	20.0-20.5	18	4	59.8	26	15.00	0.244	69.6
12/4/2006	15:12:11	25.5	20.5-21.0	18	6	58.4	23	14.20	0.217	62.0
12/4/2006	15:12:13	25.5	20.5-21.0	18	8	61.4	25	15.40	0.270	77.1
12/4/2006	15:12:15	25.5	20.5-21.0	18	10	59.9	25	14.80	0.248	70.9
12/4/2006	15:12:17	25.5	20.5-21.0	18	12	58.7	25	15.10	0.266	76.0
12/4/2006	15:12:19	25.5	21.0-21.5	18	14	59.0	25	15.20	0.258	73.8
12/4/2006	15:12:21	25.5	21.0-21.5	18	16	59.3	24	15.20	0.260	74.4
12/4/2006	15:12:23	25.5	21.0-21.5	18	18	58.7	25	15.00	0.275	78.6
12/4/2006	15:12:25	25.5	21.0-21.5	18	20	59.3	25	15.40	0.282	80.7
12/4/2006	15:26:44	45.5	40.0-40.5	31	24	61.1	26	15.30	0.274	78.2
12/4/2006	15:26:46	45.5	40.0-40.5	31	26	58.3	25	14.80	0.256	73.1
12/4/2006	15:26:48	45.5	40.0-40.5	31	28	58.4	25	14.90	0.254	72.6
12/4/2006	15:26:50	45.5	40.0-40.5	31	30	58.1	25	14.70	0.255	72.7
12/4/2006	15:26:52	45.5	40.5-41.0	31	32	58.6	23	14.10	0.247	70.6
12/4/2006	15:26:54	45.5	40.5-41.0	31	34	59.6	25	14.80	0.268	76.5
12/4/2006	15:26:56	45.5	40.5-41.0	31	36	59.3	27	15.70	0.288	82.2
12/4/2006	15:26:58	45.5	40.5-41.0	31	38	59.6	26	15.30	0.284	81.2
12/4/2006	15:27:00	45.5	40.5-41.0	31	40	59.4	25	15.30	0.272	77.9
12/4/2006	15:27:02	45.5	40.5-41.0	31	42	58.6	24	14.70	0.266	76.1
12/4/2006	15:27:04	45.5	40.5-41.0	31	44	59.1	26	15.60	0.284	81.2
12/4/2006	15:27:06	45.5	41.0-41.5	31	46	59.3	25	14.60	0.256	73.0
12/4/2006	15:27:08	45.5	41.0-41.5	31	48	58.7	26	15.50	0.284	81.1
12/4/2006	15:27:10	45.5	41.0-41.5	31	50	58.9	26	15.60	0.282	80.4
12/4/2006	15:27:12	45.5	41.0-41.5	31	52	59.3	24	14.50	0.248	70.8
12/4/2006	15:27:14	45.5	41.0-41.5	31	54	58.9	26	15.10	0.275	78.5
12/4/2006	15:27:16	45.5	41.0-41.5	31	56	58.9	26	15.40	0.274	78.4
12/4/2006	15:27:18	45.5	41.0-41.5	31	58	59.2	24	14.50	0.248	70.7
12/4/2006	15:27:20	45.5	41.0-41.5	31	60	59.3	27	15.60	0.285	81.5
12/4/2006	15:27:22	45.5	41.0-41.5	31	62	59.0	27	15.60	0.287	81.9
12/4/2006	15:47:16	65.5	60.0-60.5	37	64	59.5	25	15.00	0.258	73.8
12/4/2006	15:47:18	65.5	60.0-60.5	37	66	58.5	25	14.90	0.253	72.3

12/4/2006	15:47:20	65.5	60.0-60.5	37	68	59.0	24	14.60	0.257	73.5
12/4/2006	15:47:22	65.5	60.0-60.5	37	70	59.5	25	14.90	0.261	74.5
12/4/2006	15:47:24	65.5	60.0-60.5	37	72	58.7	25	15.00	0.264	75.6
12/4/2006	15:47:26	65.5	60.0-60.5	37	74	59.3	24	14.80	0.260	74.3
12/4/2006	15:47:28	65.5	60.5-61.0	37	76	59.0	25	15.20	0.268	76.4
12/4/2006	15:47:30	65.5	60.5-61.0	37	78	58.8	24	14.90	0.264	75.5
12/4/2006	15:47:32	65.5	60.5-61.0	37	80	58.9	25	15.30	0.268	76.5
12/4/2006	15:47:34	65.5	60.5-61.0	37	82	58.7	25	15.00	0.270	77.1
12/4/2006	15:47:36	65.5	60.5-61.0	37	84	58.8	25	15.00	0.265	75.8
12/4/2006	15:47:38	65.5	60.5-61.0	37	86	59.3	26	15.30	0.276	79.0
12/4/2006	15:47:40	65.5	60.5-61.0	37	88	58.9	25	15.30	0.268	76.7
12/4/2006	15:47:42	65.5	60.5-61.0	37	90	58.8	25	15.10	0.268	76.6
12/4/2006	15:47:44	65.5	61.0-61.5	37	92	59.1	26	15.30	0.279	79.6
12/4/2006	15:47:46	65.5	61.0-61.5	37	94	59.0	26	15.50	0.278	79.3
12/4/2006	15:47:48	65.5	61.0-61.5	37	96	58.9	26	15.60	0.270	77.1
12/4/2006	15:47:50	65.5	61.0-61.5	37	98	58.5	25	15.30	0.261	74.5
12/4/2006	15:47:52	65.5	61.0-61.5	37	100	58.3	25	15.10	0.254	72.7
12/4/2006	15:47:54	65.5	61.0-61.5	37	102	58.8	26	16.10	0.285	81.3
12/4/2006	15:47:56	65.5	61.0-61.5	37	104	58.8	26	15.50	0.281	80.2
12/4/2006	15:47:58	65.5	61.0-61.5	37	106	59.1	26	15.90	0.291	83.0
12/4/2006	15:48:00	65.5	61.0-61.5	37	108	58.9	26	15.90	0.283	81.0
12/4/2006	16:18:10	85.5	80.0-80.5	28=3"	112	0.0	24	15.50	0.284	81.1
12/4/2006	16:18:12	85.5	80.0-80.5	28=3"	114	59.5	25	15.10	0.266	76.1
12/4/2006	16:18:12	85.5	80.0-80.5	28=3"	116	59.4	25	15.30	0.277	79.0
12/4/2006	16:18:16	85.5	80.0-80.5	28=3"	118	59.1	26	15.50	0.278	79.4
12/4/2006	16:18:18	85.5	80.0-80.5	28=3"	120	58.8	24	14.40	0.239	68.4
12/4/2006	16:18:20	85.5	80.0-80.5	28=3"	122	58.6	24	14.20	0.232	66.4
12/4/2006	16:18:22	85.5	80.0-80.5	28=3"	124	59.0	25	14.80	0.251	71.7
12/4/2006	16:18:24	85.5	80.0-80.5	28=3"	126	58.9	25	15.10	0.272	77.6
12/4/2006	16:18:26	85.5	80.0-80.5	28=3"	128	59.0	26	15.40	0.281	80.4
12/4/2006	16:18:28	85.5	80.0-80.5	28=3"	130	59.1	26	15.80	0.280	80.1
12/4/2006	16:18:30	85.5	80.0-80.5	28=3"	132	59.0	26	15.50	0.282	80.6
12/4/2006	16:18:32	85.5	80.5-81.0	28=3"	134	59.2	25	14.70	0.261	74.6
12/4/2006	16:18:34	85.5	80.5-81.0	28=3"	136	59.1	25	14.70	0.255	72.8
12/4/2006	16:18:36	85.5	80.5-81.0	28=3"	138	58.8	25	14.70	0.253	72.5
12/4/2006	16:18:38	85.5	80.5-81.0		140	58.9	25 25	14.80	0.257	73.5
12/4/2006	16:18:40	85.5	80.5-81.0	28=3"	142	58.9	25	14.70	0.257	73.4
12/4/2006	16:18:42	85.5	80.5-81.0	28=3"	144	59.2	25	14.90	0.256	73.1
12/4/2006	16:18:44	85.5	80.5-81.0	28=3"	146	58.9	26	15.10	0.230	77.3
12/4/2006	16:18:46	85.5	80.5-81.0	28=3"	148	59.0	25 25	15.00	0.257	73.4
12/4/2006	16:18:48	85.5	80.5-81.0	28=3"	150	59.0 59.1	26	15.10	0.268	76.5
12/4/2006	16:18:50	85.5	80.5-81.0	28=3"	152	59.1	25	15.10	0.266	75.9
12/4/2006	16:18:52	85.5	80.5-81.0	28=3" 28=3"	154	59.2	23 27	15.80	0.286	81.7
12/4/2006	16:18:54	85.5	80.5-81.0	28=3"	154	59.2 59.2	25	14.70	0.263	75.1
12/4/2006	16:18:56	85.5	80.5-81.0	28=3"	158	58.9	25 25	14.70	0.263	75.0
12/4/2006	16:47:41	105.5	100-100.5	20-3 60=5"	164	59.5	25 25	15.10	0.283	75.0 80.4
12/4/2006	16:47:41	105.5		60-5 60=5"	164 166	59.5 59.1	25 25	15.40 14.90	0.260	60.4 74.2
12/4/2006	16:47:43	105.5	100-100.5		168	59.1 59.0	25 25	14.90	0.260	74.Z 76.7
12/4/2006	16:47:45	105.5	100-100.5		170	59.0 59.0	25 25	15.00	0.268	76.2
12/4/2006	16:47:47	105.5	100-100.5			59.0 59.3			0.287	76.2 81.7
12/4/2006	16:47:49	105.5	100-100.5		172 174		27 25	16.00 15.00		76.1
12/4/2000	10.47.31	105.5	100-100.5	00-0	174	58.7	20	15.00	0.267	10.1

12/4/2006	16:47:53	105.5	100-100.5	60=5"	176	58.5	25	14.90	0.264	75.3
12/4/2006	16:47:55	105.5	100-100.5	60=5"	178	58.9	26	15.30	0.281	80.3
12/4/2006	16:47:57	105.5	100-100.5	60=5"	180	59.0	27	15.70	0.281	80.4
12/4/2006	16:47:59	105.5	100-100.5	60=5"	182	59.2	26	15.60	0.278	79.5
12/4/2006	16:48:01	105.5	100-100.5	60=5"	184	58.9	26	15.80	0.282	80.7
12/4/2006	16:48:03	105.5	100-100.5	60=5"	186	58.7	27	15.80	0.285	81.3
12/4/2006	16:48:05	105.5	100-100.5	60=5"	188	58.7	26	15.40	0.269	76.9
12/4/2006	16:48:07	105.5	100-100.5	60=5"	190	58.6	26	15.30	0.271	77.3
12/4/2006	16:48:09	105.5	100-100.5	60=5"	192	59.3	26	15.80	0.284	81.1
12/4/2006	16:48:11	105.5	100-100.5	60=5"	194	58.7	26	15.20	0.264	75.3
12/4/2006	16:48:13	105.5	100-100.5	60=5"	196	58.8	27	15.70	0.280	80.0
12/4/2006	16:48:15	105.5	100-100.5	60=5"	198	58.9	27	16.20	0.289	82.7
12/4/2006	16:48:17	105.5	100-100.5	60=5"	200	59.0	27	15.80	0.281	80.4
12/4/2006	16:48:19	105.5	100-100.5	60=5"	202	58.8	26	15.10	0.278	79.3
12/4/2006	16:48:21	105.5	100-100.5	60=5"	204	58.6	26	15.40	0.270	77.0
12/4/2006	16:48:23	105.5	100-100.5	60=5"	206	59.0	26	15.20	0.278	79.4
12/4/2006	16:48:25	105.5	100-100.5	60=5"	208	58.7	28	16.00	0.289	82.5
12/4/2006	16:48:27	105.5	100-100.5	60=5"	210	59.0	26	15.50	0.285	81.3
12/4/2006	16:48:29	105.5	100-100.5	60=5"	212	58.9	27	15.50	0.281	80.2
12/4/2006	16:48:31	105.5	100-100.5	60=5"	214	58.9	27	15.90	0.286	81.7
12/4/2006	16:48:33	105.5	100-100.5	60=5"	216	58.4	27	15.50	0.278	79.5
12/4/2006	16:48:35	105.5	100-100.5	60=5"	218	58.5	26	15.30	0.265	75.8
12/4/2006	16:48:37	105.5	100-100.5	60=5"	220	58.3	26	15.60	0.280	79.9
12/4/2006	16:48:39	105.5	100-100.5	60=5"	222	58.8	27	15.70	0.288	82.4

1.17	inches^2	Area								
			ic Weight Dens	sitv		DEPTH	N	AVE. ETR	STDEV	
	feet/secon	•	-			(ft)	(bpf)	(%)	of ETR	
29999.6			Modulus			20.0-21.5	7	*67.4	*2.23	
						22.0-23.5	12	79.6	2.76	
F3	F1	218.16	6			40.0-41.5	17	83.4	0.73	
F4	F2	219.18				60.0-61.5	27	84.2	0.56	
			-			80.0-80.8	37	82.5	2.97	
A3	A1	282	2			100.0-100.8		83.7	0.76	
A4	A2	29					BLOWS		**2.23	
			-			*Equipment				
								n engaged i		ow
PJ	TRC0701							draulic mot		
PN	CME-75					** Excluding	-			
PD		-75 (A⊢	ITD EQUIP #8	400): C	ME Au	-				
OP			to; SPT Analyz							
0.	Brillor Br			.0. 20						
Date	Time	LP	DEPTH	Ν	BN	BPM	FMX	VMX	EFV	ETR
	-	feet	feet	bpf		blows/minut		feet/second		(%)
2/22/2007	13:15:53	24	20.0-20.5	7	1	0	26	14.3	0.225	64.3
2/22/2007		24	20.5-21.0	7	3	0	27	14.5	0.233	66.5
2/22/2007		24	20.5-21.0	7	4	26.1	27	14.4	0.233	66.4
2/22/2007		24	21.0-21.5	7	5	26.5	27	14.7	0.232	66.4
2/22/2007		24	21.0-21.5	7	6	26.7	27	14.8	0.234	66.9
2/22/2007		24	21.0-21.5	7	7	26.7	27	14.8	0.235	67.1
2/22/2007		24	21.0-21.5	7	8	27	27	15.0	0.250	71.5
2/22/2007		24	21.0-21.5	7	9	27.1	27	15.0	0.244	69.7
2/22/2007		26	22.0-22.5	12	3	45.7	29	14.7	0.286	81.8
2/22/2007		26	22.0-22.5	12	4	56.8	29	14.2	0.279	79.8
2/22/2007		26	22.0-22.5	12	5	56.2	29	14.3	0.281	80.3
2/22/2007		26	22.0-22.5	12	6	56.1	29	14.5	0.285	81.4
2/22/2007		26	22.5-23.0	12	7	56.2	29	14.5	0.279	79.7
2/22/2007		26	22.5-23.0	12	8	56.1	29	14.5	0.285	81.4
2/22/2007	15:08:08	26	22.5-23.0	12	9	56.1	29	14.7	0.278	79.3
2/22/2007	15:08:09	26	22.5-23.0	12	10	56.1	29	14.4	0.280	79.9
2/22/2007	15:08:10	26	22.5-23.0	12	11	56.1	29	14.5	0.280	80.0
2/22/2007	15:08:11	26	23.0-23.5	12	12	56	29	14.6	0.280	79.9
2/22/2007	15:08:12	26	23.0-23.5	12	13	56	29	14.6	0.277	79.2
2/22/2007		26	23.0-23.5	12	14	56.1	29	14.3	0.278	79.6
2/22/2007	15:08:14	26	23.0-23.5	12	15	56	29	14.5	0.282	80.6
2/22/2007	15:08:21	26	23.0-23.5	12	16	0	29	14.6	0.282	80.5
2/22/2007	15:08:22	26	23.0-23.5	12	17	56.8	29	14.5	0.283	80.9
2/22/2007	15:08:23	26	23.0-23.5	12	18	56.1	29	14.8	0.288	82.2
2/22/2007	15:40:23	46	40.0-40.5	17	19	0	29	14.6	0.296	84.7
2/22/2007	15:40:24	46	40.0-40.5	17	20	56.8	29	14.8	0.296	84.7
2/22/2007	15:40:25	46	40.0-40.5	17	21	55.9	29	14.5	0.293	83.8
2/22/2007		46	40.0-40.5	17	22	55.9	28	14.2	0.287	82.0
2/22/2007		46	40.0-40.5	17	23	55.9	28	14.1	0.289	82.6
2/22/2007		46	40.0-40.5	17	24	55.7	29	14.2	0.292	83.3
2/22/2007		46	40.0-40.5	17	25	55.7	29	14.3	0.294	84.0
2/22/2007		46	40.5-41.0	17	26	55.7	29	14.2	0.289	82.6
2/22/2007	15:40:32	46	40.5-41.0	17	27	55.8	28	14.0	0.290	82.9

2/22/2007	15:40:33	46	40.5-41.0	17	28	55.7	29	14.2	0.290	83.0
2/22/2007	15:40:34	46	40.5-41.0	17	29	55.8	29	14.0	0.293	83.7
2/22/2007	15:40:35	46	40.5-41.0	17	30	55.6	28	14.2	0.290	82.7
2/22/2007	15:40:36	46	40.5-41.0	17	31	55.8	29	14.2	0.295	84.3
2/22/2007	15:40:37	46	40.5-41.0	17	32	55.7	29	14.2	0.291	83.3
2/22/2007	15:40:38	46	41.0-41.5	17	33	55.7	28	14.2	0.289	82.6
2/22/2007	15:40:39	46	41.0-41.5	17	34	55.8	28	14.3	0.292	83.4
2/22/2007	15:40:40	46	41.0-41.5	17	35	55.7	29	14.3	0.291	83.1
2/22/2007	15:40:41	46	41.0-41.5	17	36	55.5	29	14.1	0.293	83.7
2/22/2007	15:40:42	46	41.0-41.5	17	37	55.7	29	14.1	0.296	84.6
2/22/2007	15:40:43	46	41.0-41.5	17	38	55.7	29	14.2	0.292	83.4
2/22/2007	15:40:44	46	41.0-41.5	17	39	55.6	29	14.3	0.294	83.9
2/22/2007	15:40:45	46	41.0-41.5	17	40	55.6	23	14.4	0.294	83.3
2/22/2007	15:40:43	46	41.0-41.5	17	40 41	55.7	20 29	14.4	0.291	83.5
2/22/2007	15:40:47	40 46	41.0-41.5	27	41	55.7	29 28	14.4	0.292	83.2
2/22/2007			41.0-41.5 41.0-41.5							
	15:40:49	46		27	43	55.6	29	14.3	0.292	83.4
2/22/2007	16:14:20	66	60.0-60.5	27	44	0	29	14.1	0.297	84.8
2/22/2007	16:14:21	66	60.0-60.5	27	45	57	29	14.2	0.295	84.2
2/22/2007	16:14:22	66	60.0-60.5	27	46	55.8	29	14.1	0.299	85.4
2/22/2007	16:14:23	66	60.0-60.5	27	47	55.8	29	14.0	0.295	84.2
2/22/2007	16:14:24	66	60.0-60.5	27	48	55.8	29	14.1	0.296	84.5
2/22/2007	16:14:25	66	60.0-60.5	27	49	55.7	29	13.9	0.296	84.6
2/22/2007	16:14:26	66	60.0-60.5	27	50	55.7	29	14.0	0.291	83.3
2/22/2007	16:14:27	66	60.0-60.5	27	51	55.6	29	14.0	0.292	83.5
2/22/2007	16:14:29	66	60.5-61.0	27	52	55.8	29	14.0	0.292	83.5
2/22/2007	16:14:30	66	60.5-61.0	27	53	55.7	29	14.3	0.296	84.5
2/22/2007	16:14:31	66	60.5-61.0	27	54	55.6	29	14.3	0.292	83.4
2/22/2007	16:14:32	66	60.5-61.0	27	55	55.5	29	14.3	0.292	83.5
2/22/2007	16:14:33	66	60.5-61.0	27	56	55.6	29	14.5	0.292	83.3
2/22/2007	16:14:34	66	60.5-61.0	27	57	55.5	29	14.2	0.295	84.2
2/22/2007	16:14:35	66	60.5-61.0	27	58	55.5	29	14.7	0.292	83.5
2/22/2007	16:14:36	66	60.5-61.0	27	59	55.4	29	14.5	0.295	84.4
2/22/2007	16:14:37	66	60.5-61.0	27	60	55.6	29	14.2	0.294	83.9
2/22/2007	16:14:38	66	60.5-61.0	27	61	55.7	29	14.3	0.296	84.6
2/22/2007	16:14:39	66	60.5-61.0	27	62	55.7	29	14.4	0.294	83.9
2/22/2007	16:14:40	66	60.5-61.0	27	63	55.5	29	14.4	0.295	84.2
2/22/2007	16:14:41	66	60.5-61.0	27	64	55.7	29	14.4	0.297	84.9
2/22/2007	16:14:42	66	61.0-61.5	27	65	55.5	29	14.4	0.295	84.4
2/22/2007	16:14:43	66	61.0-61.5	27	66	55.6	29	14.1	0.296	84.6
2/22/2007	16:14:44	66	61.0-61.5	27	67	55.6	29	14.2	0.295	84.4
2/22/2007	16:14:45	66	61.0-61.5	27	68	55.5	29	14.1	0.295	84.4
2/22/2007	16:14:47	66	61.0-61.5	27	69	55.5	29	14.5	0.296	84.5
2/22/2007	16:14:48	66	61.0-61.5	27	70	55.4	29	14.3	0.296	84.7
2/22/2007	16:14:49	66	61.0-61.5	27	71	55.7	29	14.4	0.292	83.5
2/22/2007	16:14:50	66	61.0-61.5	27	72	55.6	29	14.2	0.291	83.3
2/22/2007	16:14:51	66	61.0-61.5	27	73	55.5	29	14.3	0.297	84.8
2/22/2007	16:14:52	66	61.0-61.5	27	74	55.5	29	14.4	0.297	84.8
2/22/2007	16:14:53	66	61.0-61.5	27	75	55.6	29	14.3	0.297	84.7
2/22/2007	16:14:54	66	61.0-61.5	27	76	55.4	29	14.4	0.294	84.0
2/22/2007	16:14:55	66	61.0-61.5	27	77	55.6	29 29	14.4	0.294	84.3
2/22/2007	16:14:56	66	61.0-61.5	27	78	55.6	29 29	14.3	0.293	83.9
2/22/2007	16:14:57	66	61.0-61.5	27	79	55.5	29 29	14.3	0.295	84.2
	10.14.07	00	01.0-01.0	21	13	00.0	23	1-1.0	0.200	04.2

2/26/2007	15:20:00	86	80.0-80.5	37	1	0	29	13.8	0.275	78.5
2/26/2007	15:20:01	86	80.0-80.5	37	2	41.9	29	13.8	0.274	78.2
2/26/2007	15:20:03	86	80.0-80.5	37	3	41.9	29	13.9	0.272	77.7
2/26/2007	15:20:04	86	80.0-80.5	37	4	41.9	29	14.1	0.271	77.3
2/26/2007	15:20:05	86	80.0-80.5	37	5	41.9	29	14.2	0.273	77.9
2/26/2007	15:20:07	86	80.0-80.5	37	6	41.9	29	14.1	0.275	78.6
2/26/2007	15:20:08	86	80.5-81.0	37	7	41.9	29	13.7	0.270	77.2
2/26/2007	15:20:10	86	80.5-81.0	37	8	42	29	13.9	0.273	78.1
2/26/2007	15:20:11	86	80.5-81.0	37	9	42	29	14.2	0.271	77.3
2/26/2007	15:20:12	86	80.5-81.0	37	10	41.9	29	14.5	0.274	78.3
2/26/2007	15:20:14	86	80.5-81.0	37	11	42	29	14.4	0.274	78.2
2/26/2007	15:20:15	86	80.5-81.0	37	12	42	29	13.9	0.271	77.5
2/26/2007	15:20:17	86	80.5-81.0	37	13	43	29	14.3	0.282	80.6
2/26/2007	15:20:18	86	80.5-81.0	37	14	45.8	30	14.5	0.280	80.1
2/26/2007	15:20:19	86	80.5-81.0	37	15	49.5	29	14.3	0.285	81.4
2/26/2007	15:20:20	86	80.5-81.0	37	16	52.1	31	15.0	0.290	83.0
2/26/2007	15:20:21	86	80.5-81.0	37	17	53.4	30	14.7	0.290	82.8
2/26/2007	15:20:22	86	80.5-81.0	37	18	53.5	30	14.9	0.288	82.2
2/26/2007	15:20:23	86	80.5-81.0	37	19	53.4	30	15.0	0.292	83.3
2/26/2007	15:20:25	86	80.5-81.0	37	20	53.4	30	15.1	0.290	82.8
2/26/2007	15:20:26	86	80.5-81.0	37	21	53.4	30	14.9	0.289	82.7
2/26/2007	15:20:27	86	81.0-81.5	37	22	53.4	30	14.5	0.288	82.4
2/26/2007	15:20:28	86	81.0-81.5	37	23	53.1	30	15.2	0.294	84.1
2/26/2007	15:20:29	86	81.0-81.5	37	24	56.3	30	14.8	0.297	84.8
2/26/2007	15:20:30	86	81.0-81.5	37	25	55.6	30	15.3	0.293	83.8
2/26/2007	15:20:31	86	81.0-81.5	37	26	55.7	30	15.2	0.296	84.5
2/26/2007	15:20:32	86	81.0-81.5	37	27	55.6	30	14.7	0.293	83.8
2/26/2007	15:20:33	86	81.0-81.5	37	28	55.6	30	15.0	0.298	85.0
2/26/2007	15:20:34	86	81.0-81.5	37	29	55.6	30	15.5	0.298	85.2
2/26/2007	15:20:35	86	81.0-81.5	37	30	55.7	30	14.9	0.298	85.1
2/26/2007	15:20:36	86	81.0-81.5	37	31	55.7	30	14.9	0.297	84.9
2/26/2007	15:20:37	86	81.0-81.5	37	32	55.6	30	15.0	0.294	84.1
2/26/2007	15:20:38	86	81.0-81.5	37	33	55.5	30	14.9	0.295	84.3
2/26/2007	15:20:40	86	81.0-81.5	37	34	55.6	30	14.4	0.297	85.0
2/26/2007	15:20:41	86	81.0-81.5	37	35	55.6	30	15.2	0.298	85.2
2/26/2007	15:20:42	86	81.0-81.5	37	36	55.6	30	14.7	0.294	84.1
2/26/2007	15:20:43	86	81.0-81.5	37	37	55.5	30	14.8	0.299	85.4
2/26/2007	15:20:44	86	81.0-81.5	37	38	55.6	30	14.7	0.297	84.7
2/26/2007	15:20:45	86	81.0-81.5	37	39	55.5	30	14.4	0.301	85.9
2/26/2007	15:20:46	86	81.0-81.5	37	40	55.7	30	14.7	0.295	84.2
2/26/2007	15:20:47	86	81.0-81.5	37	41	55.4	30	14.4	0.299	85.5
2/26/2007	15:20:48	86	81.0-81.5	37	42	55.5	30	14.7	0.298	85.2
2/26/2007	15:20:49	86	81.0-81.5	37	43	55.6	30	15.1	0.297	84.9
2/26/2007	15:20:50	86	81.0-81.5	37	44	55.6	30	14.3	0.301	85.9
2/26/2007	15:20:51	86	81.0-81.5	37	45	55.6	30	14.6	0.296	84.5
2/26/2007	15:20:52	86	81.0-81.5	37	46	55.5	30	14.4	0.297	84.7
2/26/2007	17:23:50	106	100.0-100.5	11/2"	47	0	30	14.0	0.291	83.1
2/26/2007	17:23:51	106	100.0-100.5	11/2"	48	56.3	30	14.0	0.293	83.8
2/26/2007	17:23:52	106	100.0-100.5	11/2"	49	55.7	30	14.1	0.294	83.9
2/26/2007	17:23:53	106	100.0-100.5	11/2"	50	55.6	30	14.0	0.290	82.8
2/26/2007	17:23:54	106	100.0-100.5	11/2"	51	55.6	30	14.1	0.295	84.4
2/26/2007	17:23:55	106	100.0-100.5	11/2"	52	55.7	30	14.0	0.292	83.4

2/26/2007	17:23:56	106	100.0-100.5	11/2"	53	55.6	30	14.2	0.294	84.0
2/26/2007	17:23:57	106	100.0-100.5	11/2"	54	55.7	30	14.2	0.291	83.2
2/26/2007	17:23:58	106	100.0-100.5	11/2"	55	55.6	30	14.2	0.291	83.1
2/26/2007	17:23:59	106	100.0-100.5	11/2"	56	55.6	30	14.4	0.292	83.5
2/26/2007	17:24:01	106	100.0-100.5	11/2"	57	55.5	30	14.1	0.295	84.3
2/26/2007	17:24:02	106	100.0-100.5	11/2"	58	55.5	30	14.2	0.291	83.2
2/26/2007	17:24:03	106	100.0-100.5	11/2"	59	55.5	30	14.2	0.295	84.3
2/26/2007	17:24:04	106	100.0-100.5	11/2"	60	55.6	30	14.2	0.292	83.4
2/26/2007	17:24:05	106	100.0-100.5	11/2"	61	55.5	30	14.4	0.297	84.9
2/26/2007	17:24:06	106	100.0-100.5	11/2"	62	55.6	29	14.2	0.287	82.0
2/26/2007	17:24:07	106	100.0-100.5	11/2"	63	55.7	30	14.4	0.294	83.9
2/26/2007	17:24:08	106	100.0-100.5	11/2"	64	55.6	30	14.3	0.294	84.0
2/26/2007	17:24:09	106	100.0-100.5	11/2"	65	55.7	30	14.3	0.292	83.5
2/26/2007	17:24:10	106	100.0-100.5	11/2"	66	55.5	29	14.4	0.294	84.0
2/26/2007	17:24:11	106	100.0-100.5	11/2"	67	55.6	30	14.3	0.294	84.1
2/26/2007	17:24:12	106	100.0-100.5	11/2"	68	55.6	29	14.6	0.293	83.7
2/26/2007	17:24:13	106	100.0-100.5	11/2"	69	55.5	30	13.9	0.293	83.8
2/26/2007	17:24:14	106	100.0-100.5	11/2"	70	55.6	30	14.1	0.290	82.8
2/26/2007	17:24:15	106	100.0-100.5	11/2"	71	55.7	30	14.5	0.296	84.5
2/26/2007	17:24:16	106	100.0-100.5	11/2"	72	55.5	29	14.2	0.289	82.6
2/26/2007	17:24:17	106	100.0-100.5	11/2"	73	55.5	29	14.3	0.292	83.4
2/26/2007	17:24:19	106	100.0-100.5	11/2"	74	55.6	30	14.4	0.291	83.1
2/26/2007	17:24:20	106	100.0-100.5	11/2"	75	55.5	30	14.0	0.289	82.4
2/26/2007	17:24:21	106	100.0-100.5	11/2"	76	55.5	30	14.1	0.291	83.1
2/26/2007	17:24:22	106	100.0-100.5	11/2"	77	55.6	29	14.4	0.292	83.5
2/26/2007	17:24:23	106	100.0-100.5	11/2"	78	55.5	29	14.2	0.289	82.5
2/26/2007	17:24:24	106	100.0-100.5	11/2"	79	55.5	30	14.4	0.292	83.5
2/26/2007	17:24:25	106	100.0-100.5	11/2"	80	55.6	29	14.3	0.291	83.1
2/26/2007	17:24:26	106	100.5-100.8	11/2"	81	55.4	30	14.3	0.293	83.7
2/26/2007	17:24:27	106	100.5-100.8	11/2"	82	55.5	30	14.4	0.295	84.4
2/26/2007	17:24:28	106	100.5-100.8	11/2"	83	55.5	30	14.4	0.299	85.5
2/26/2007	17:24:29	106	100.5-100.8	11/2"	84	55.4	30	13.8	0.296	84.7
2/26/2007	17:24:30	106	100.5-100.8	11/2"	85	55.4	30	14.5	0.292	83.5
2/26/2007	17:24:31	106	100.5-100.8	11/2"	86	55.5	30	14.3	0.294	84.1
2/26/2007	17:24:32	106	100.5-100.8	11/2"	87	55.4	30	14.4	0.293	83.6
2/26/2007	17:24:33	106	100.5-100.8	11/2"	88	55.4	30	14.2	0.291	83.2
2/26/2007	17:24:34	106	100.5-100.8	11/2"	89	55.5	30	14.7	0.297	84.9
2/26/2007	17:24:36	106	100.5-100.8	11/2"	90	55.4	30	14.5	0.296	84.6
2/26/2007	17:24:37	106	100.5-100.8	11/2"	91	55.5	30	14.5	0.299	85.3

*Equipment malfunction, hydraulic chuck release mechanism was engaged reducing flow to SPT hammer hydraulic motor

	1.17 inches^	2 Area	_				
0.492	2083 kips/fee	t^3 Specific Weight Density		DEPTH	Ν	AVE. ETR	STDEV
168	07.7 feet/sec	on: Wave Speed		(ft)	(bpf)	(%)	of ETR
299	99.6 ksi	Elastic Modulus		3.0-4.5	8	82.0	12.47
			[8.0-9.5	32	83.7	1.58
F3	F1	218.2		13.5-13.8	22/3"	88.8	2.40
F4	F2	219.2	[3.0-4.5	5	78.9	10.04
				8.0-9.5	25	86.3	1.28
A3	A1	282	[ALL B	LOWS	85.3	4.74
A4	A2	295	-				

PJ TRC0701

PN CME-45

PD1986 CME-45 Skid Mounted Rig (AHTD EQUIP #1002); CME Automatic HammerOPDriller- Josh Higginbottom; SPT Analyzer - David Ross

Date	Time	LP	DEPTH	Ν	BN	BPM	FMX	VMX	EFV	ETR
		feet	feet	bpf		blows/min.	kips	feet/second	kip-feet	(%)
3/5/2007	10:26:50	8.8	3.0-3.5	8	1	0	28	16.3	0.215	61.5
3/5/2007	10:26:57	8.8	3.0-3.5	8	2	0	28	16.2	0.228	65.0
3/5/2007	10:26:59	8.8	3.0-3.5	8	3	52.8	28	16.8	0.331	94.5
3/5/2007	10:27:00	8.8	3.5-4.0	8	4	52.7	28	16.9	0.316	90.2
3/5/2007	10:27:01	8.8	3.5-4.0	8	5	53.7	28	16.4	0.297	84.9
3/5/2007	10:27:02	8.8	3.5-4.0	8	6	52.6	28	16.0	0.278	79.4
3/5/2007	10:27:03	8.8	3.5-4.0	8	7	53.3	28	16.0	0.314	89.7
3/5/2007	10:27:04	8.8	4.0-4.5	8	8	52.9	29	16.4	0.318	91.0
3/5/2007	11:11:10	13.8	8.0-8.5	32	9	0	28	16.0	0.274	78.4
3/5/2007	11:11:11	13.8	8.0-8.5	32	10	50.4	28	15.2	0.285	81.4
3/5/2007	11:11:13	13.8	8.0-8.5	32	11	50.2	29	15.2	0.286	81.8
3/5/2007	11:11:14	13.8	8.0-8.5	32	12	50.7	29	15.2	0.287	81.9
3/5/2007	11:11:15	13.8	8.0-8.5	32	13	51.2	29	15.4	0.284	81.1
3/5/2007	11:11:16	13.8	8.0-8.5	32	14	51.6	29	15.5	0.292	83.3
3/5/2007	11:11:17	13.8	8.0-8.5	32	15	52.2	29	15.4	0.284	81.1
3/5/2007	11:11:18	13.8	8.0-8.5	32	16	52.1	29	15.2	0.292	83.4
3/5/2007	11:11:19	13.8	8.0-8.5	32	17	52.2	29	15.5	0.293	83.7
3/5/2007	11:11:21	13.8	8.0-8.5	32	18	52.1	29	15.5	0.291	83.0
3/5/2007	11:11:22	13.8	8.0-8.5	32	19	52.2	29	15.4	0.289	82.5
3/5/2007	11:11:23	13.8	8.0-8.5	32	20	52.1	29	15.3	0.294	84.1
3/5/2007	11:11:24	13.8	8.5-9.0	32	21	52.3	29	15.4	0.295	84.2
3/5/2007	11:11:25	13.8	8.5-9.0	32	22	52.4	29	15.5	0.295	84.3
3/5/2007	11:11:26	13.8	8.5-9.0	32	23	52.1	29	15.4	0.293	83.6
3/5/2007	11:11:27	13.8	8.5-9.0	32	24	52.5	29	15.5	0.296	84.7
3/5/2007	11:11:28	13.8	8.5-9.0	32	25	52.2	29	15.3	0.296	84.6
3/5/2007	11:11:30	13.8	8.5-9.0	32	26	51.9	29	15.6	0.292	83.3
3/5/2007	11:11:31	13.8	8.5-9.0	32	27	52.4	29	15.5	0.290	82.8
3/5/2007	11:11:32	13.8	8.5-9.0	32	28	52.2	29	15.5	0.293	83.8
3/5/2007	11:11:33	13.8	8.5-9.0	32	29	52.5	29	15.5	0.292	83.4
3/5/2007	11:11:34	13.8	8.5-9.0	32	30	52.1	29	15.3	0.296	84.7
3/5/2007	11:11:35	13.8	8.5-9.0	32	31	52.6	29	15.5	0.293	83.6
3/5/2007	11:11:36	13.8	8.5-9.0	32	32	52.4	29	15.4	0.299	85.5
3/5/2007	11:11:37	13.8	8.5-9.0	32	33	52.4	29	15.5	0.299	85.4

3/5/2007	11:11:39	13.8	8.5-9.0	32	34	52.4	29	15.4	0.302	86.2
3/5/2007	11:11:40	13.8	8.5-9.0	32	35	52.1	29	15.8	0.301	86.1
3/5/2007	11:11:41	13.8	8.5-9.0	32	36	52.4	29	15.4	0.299	85.5
3/5/2007	11:11:42	13.8	9.0-9.5	32	37	52.1	29	15.4	0.303	86.5
3/5/2007	11:11:43	13.8	9.0-9.5	32	38	52.8	29	15.5	0.301	85.9
3/5/2007	11:11:44	13.8	9.0-9.5	32	39	52.1	29	15.6	0.298	85.2
3/5/2007	11:11:45	13.8	9.0-9.5	32	40	52.6	29	15.6	0.299	85.5
3/5/2007	11:11:47	13.8	9.0-9.5	32	41	52	29	15.5	0.294	84.0
3/5/2007	11:11:48	13.8	9.0-9.5	32	42	52.7	29	15.3	0.294	84.0
3/5/2007	11:11:49	13.8	9.0-9.5	32	43	52.3	29	15.6	0.292	83.4
3/5/2007	11:11:50	13.8	9.0-9.5	32	44	52.5	29	15.6	0.296	84.5
3/5/2007	11:11:51	13.8	9.0-9.5	32	45	52.7	29	15.5	0.290	82.9
3/5/2007	11:11:52	13.8	9.0-9.5	32	46	52.4	29	15.5	0.292	83.3
3/5/2007	11:11:53	13.8	9.0-9.5	32	47	52. 4 52.9	29	15.2	0.286	81.8
3/5/2007	11:11:54	13.8	9.0-9.5 9.0-9.5	32	48	52.9 52.4	29	15.5	0.200	83.0
3/5/2007	11:11:55	13.8	9.0-9.5 9.0-9.5	32 32	40 49	52.4 52.8	29 29	15.6	0.290	84.0
3/5/2007	11:11:55	13.8	9.0-9.5 9.0-9.5	32	49 50	52.8 52.5	29 29	15.0	0.294	83.4
	11:11:57		9.0-9.5 9.0-9.5	32 32	50 51	52.5 52.3		15.7	0.292	85.1
3/5/2007		13.8					29			
3/5/2007	11:11:59	13.8	9.0-9.5	32	52	52.9	29	15.7	0.296	84.5
3/5/2007	11:12:00	13.8	9.0-9.5	32	53	52.8	29	15.6	0.291	83.0
3/5/2007	11:40:01	18.8	13.0-13.5	22/3"	54	0	29	16.5	0.272	77.8
3/5/2007	11:40:02	18.8	13.0-13.5	22/3"	55	53.4	29	16.7	0.300	85.7
3/5/2007	11:40:04	18.8	13.0-13.5	22/3"	56	54	29	16.3	0.309	88.4
3/5/2007	11:40:05	18.8	13.0-13.5	22/3"	57	54.3	29	16.5	0.313	89.4
3/5/2007	11:40:06	18.8	13.0-13.5	22/3"	58	54.6	29	16.5	0.310	88.6
3/5/2007	11:40:07	18.8	13.0-13.5	22/3"	59	53.8	30	16.5	0.311	88.9
3/5/2007	11:40:08	18.8	13.0-13.5	22/3"	60	53.9	30	16.6	0.306	87.6
3/5/2007	11:40:09	18.8	13.0-13.5	22/3"	61	55	29	16.6	0.308	88.0
3/5/2007	11:40:10	18.8	13.0-13.5	22/3"	62	54.4	29	16.5	0.304	86.8
3/5/2007	11:40:11	18.8	13.0-13.5	22/3"	63	54.3	30	16.5	0.312	89.2
3/5/2007	11:40:12	18.8	13.5-13.8	22/3"	64	53.7	30	16.7	0.315	90.0
3/5/2007	11:40:13	18.8	13.5-13.8	22/3"	65	54.7	30	16.6	0.310	88.5
3/5/2007	11:40:14	18.8	13.5-13.8	22/3"	66	54.1	30	16.5	0.310	88.6
3/5/2007	11:40:15	18.8	13.5-13.8	22/3"	67	54	30	16.6	0.313	89.5
3/5/2007	11:40:17	18.8	13.5-13.8	22/3"	68	54.9	30	16.4	0.307	87.8
3/5/2007	11:40:18	18.8	13.5-13.8	22/3"	69	53.8	30	16.5	0.314	89.6
3/5/2007	11:40:19	18.8	13.5-13.8	22/3"	70	54.2	30	16.4	0.318	90.9
3/5/2007	11:40:20	18.8	13.5-13.8	22/3"	71	54	30	16.4	0.319	91.2
3/5/2007	11:40:21	18.8	13.5-13.8	22/3"	72	54.5	30	16.4	0.311	88.8
3/5/2007	11:40:22	18.8	13.5-13.8	22/3"	73	54.1	30	16.2	0.316	90.2
3/5/2007	11:40:23	18.8	13.5-13.8	22/3"	74	54.4	30	16.4	0.315	90.0
3/5/2007	11:40:24	18.8	13.5-13.8	22/3"	75	54	30	16.3	0.320	91.4
3/5/2007	11:40:25	18.8	13.5-13.8	22/3"	76	54.8	30	16.4	0.310	88.7
3/5/2007	11:40:26	18.8	13.5-13.8	22/3"	77	54.1	30	16.5	0.316	90.4
3/5/2007	11:40:27	18.8	13.5-13.8	22/3"	78	54.3	30	16.4	0.316	90.2
3/5/2007	11:40:29	18.8	13.5-13.8	22/3"	79	54.5	30	16.5	0.317	90.4
3/5/2007	11:40:30	18.8	13.5-13.8	22/3"	80	54.4	30	16.2	0.308	87.9
3/5/2007	11:40:31	18.8	13.5-13.8	22/3"	81	54.1	30	16.5	0.315	90.1
3/5/2007	11:40:32	18.8	13.5-13.8	22/3"	82	54.3	30	16.3	0.310	88.5
3/5/2007	11:40:33	18.8	13.5-13.8	22/3"	83	54.6	30	16.5	0.315	89.9
3/5/2007	11:40:34	18.8	13.5-13.8	22/3"	84	54.3	30	16.5	0.312	89.1
3/5/2007	14:39:34	8.8	3.0-3.5	5	1	0	29	18.9	0.207	59.3

3/5/2007	14:39:35	8.8	3.0-3.5	5	2	53.8	29	18.8	0.269	76.9
3/5/2007	14:39:37	8.8	3.5-4.0	5	3	53.8	30	18.7	0.295	84.2
3/5/2007	14:39:38	8.8	3.5-4.0	5	4	54.1	29	18.8	0.288	82.2
3/5/2007	14:39:39	8.8	4.0-4.5	5	5	54.3	30	18.7	0.306	87.4
3/5/2007	14:39:40	8.8	4.0-4.5	5	6	54.4	30	18.7	0.308	88.1
3/5/2007	14:39:41	8.8	4.0-4.5	5	7	54.3	30	18.8	0.260	74.3
3/5/2007	15:06:33	13.8	8.0-8.5	25	8	0	29	16.0	0.289	82.5
3/5/2007	15:06:34	13.8	8.0-8.5	25	9	54.4	30	15.6	0.302	86.3
3/5/2007	15:06:35	13.8	8.0-8.5	25	10	53.7	30	15.7	0.296	84.5
3/5/2007	15:06:36	13.8	8.0-8.5	25	11	53.9	31	15.9	0.299	85.5
3/5/2007	15:06:37	13.8	8.0-8.5	25	12	54.6	30	16.0	0.296	84.7
3/5/2007	15:06:38	13.8	8.0-8.5	25	13	54.1	30	15.9	0.305	87.1
3/5/2007	15:06:39	13.8	8.0-8.5	25	14	54.3	30	16.0	0.297	84.9
3/5/2007	15:06:40	13.8	8.0-8.5	25	15	54.4	31	15.8	0.303	86.6
3/5/2007	15:06:42	13.8	8.0-8.5	25	16	54.7	30	16.0	0.298	85.3
3/5/2007	15:06:43	13.8	8.0-8.5	25	17	54.4	31	16.0	0.305	87.2
3/5/2007	15:06:44	13.8	8.0-8.5	25	18	54.2	30	16.0	0.304	86.9
3/5/2007	15:06:45	13.8	8.0-8.5	25	19	54.5	31	16.0	0.307	87.6
3/5/2007	15:06:46	13.8	8.0-8.5	25	20	54.2	31	16.0	0.298	85.2
3/5/2007	15:06:47	13.8	8.0-8.5	25	21	54.4	31	16.0	0.304	86.9
3/5/2007	15:06:48	13.8	8.0-8.5	25	22	54.5	31	16.0	0.302	86.2
3/5/2007	15:06:49	13.8	8.5-9.0	25 25	23	54.3	31	16.1	0.305	87.1
3/5/2007	15:06:50	13.8	8.5-9.0	25	24	54.8	31	16.0	0.302	86.3
3/5/2007	15:06:51	13.8	8.5-9.0	25	25	54.3	31	16.0	0.311	88.9
3/5/2007	15:06:52	13.8	8.5-9.0	25	26	54.5	30	16.0	0.299	85.4
3/5/2007	15:06:53	13.8	8.5-9.0	25	27	54.7	31	15.9	0.303	86.6
3/5/2007	15:06:55	13.8	8.5-9.0	25	28	54.3	30	16.1	0.298	85.2
3/5/2007	15:06:56	13.8	8.5-9.0	25	29	54.3	31	16.0	0.305	87.0
3/5/2007	15:06:57	13.8	8.5-9.0	25	30	54.2	31	16.1	0.302	86.1
3/5/2007	15:06:58	13.8	8.5-9.0	25	31	54.6	31	16.1	0.309	88.3
3/5/2007	15:06:59	13.8	8.5-9.0	25	32	54.4	31	16.2	0.303	86.6
3/5/2007	15:07:00	13.8	8.5-9.0	25	33	54.4	31	16.2	0.303	86.6
	15:07:00	13.8	8.5-9.0	25 25	34	54.3	31	16.2	0.306	87.4
3/5/2007										
3/5/2007	15:07:02	13.8	8.5-9.0	25	35	54.4	31	16.1	0.309	88.3
3/5/2007	15:07:03	13.8	9.0-9.5	25	36	54.1	31	15.9	0.302	86.2
3/5/2007	15:07:04	13.8	9.0-9.5	25	37	54.6	31	16.1	0.305	87.3
3/5/2007	15:07:05	13.8	9.0-9.5	25	38	54.2	31	16.0	0.302	86.4
3/5/2007	15:07:06	13.8	9.0-9.5	25	39	54.3	31	16.1	0.306	87.4
3/5/2007	15:07:08	13.8	9.0-9.5	25	40	54.5	31	16.1	0.301	86.0
3/5/2007	15:07:09	13.8	9.0-9.5	25	41	54.6	31	16.1	0.308	88.0
3/5/2007	15:07:10	13.8	9.0-9.5	25	42	54.5	31	16.2	0.297	84.8
3/5/2007	15:07:11	13.8	9.0-9.5	25	43	54.4	31	16.0	0.305	87.1
3/5/2007	15:07:12	13.8	9.0-9.5 9.0-9.5	25 25	44	54.4	31	15.9	0.298	85.2
3/5/2007	15:07:13	13.8	9.0-9.5	25	45	54.7	31	15.9	0.301	86.0
3/5/2007	15:07:14	13.8	9.0-9.5	25	46	54.3	31	16.1	0.299	85.3
3/5/2007	15:07:15	13.8	9.0-9.5	25	47	54.3	31	16.1	0.303	86.6
3/5/2007	15:07:16	13.8	9.0-9.5	25	48	54.7	31	16.1	0.293	83.7

0.492083	feet/second	Area Specific Weight Density Wave Speed Elastic Modulus
F3	F1	218.16
F4	F2	219.18
A3	A1	282
A4	A2	295

DEPTH	Ν	AVE. ETR	STDEV
(ft)	(bpf)	(%)	of ETR
22.0-23.5	11	73.0	1.86
30.0-31.5	20	76.4	1.20
40.0-41.5	23	76.3	0.83
60.0-61.5	32	78.2	1.65
80.0-81.5	*49=8"	78.5	0.96
100.0-100.5	*33=4"	78.4	0.73
ALL	BLOWS	77.5	1.84

* SPT Test halted to reduce wear on SPT energy measuring equipment

PJ TRC0701

ΡN CME850_2

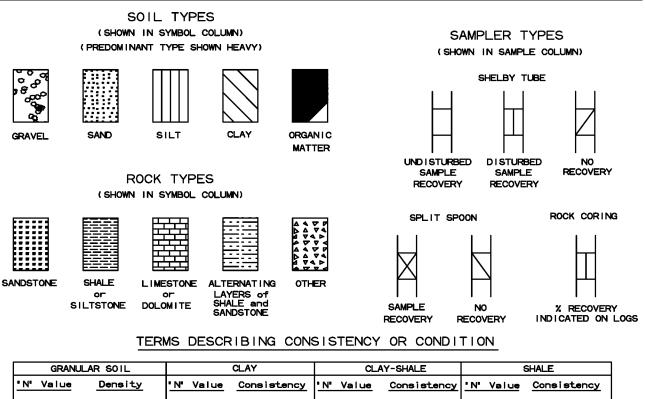
PD

2001 CME-850; CME Automatic Hammer DRILLER - Gary Brown; SPT Analyzer - David Ross OP

Date	Time	LP	DEPTH	Ν	BN	BPM	FMX	VMX	EFV	ETR
		feet	feet	(bpf)		blows/min	kips	feet/second	kip-feet	(%)
7/17/2007	11:14:19	25.5	22.0-22.5	11	1	0	27	14.6	0.247	70.6
7/17/2007	11:14:20	25.5	22.0-22.5	11	2	55	26	14.8	0.243	69.4
7/17/2007	11:14:21	25.5	22.0-22.5	11	3	53.7	27	14.9	0.261	74.5
7/17/2007	11:14:22	25.5	22.5-23.0	11	4	53.4	27	14.7	0.249	71.0
7/17/2007	11:14:23	25.5	22.5-23.0	11	5	53.5	27	14.8	0.258	73.6
7/17/2007	11:14:24	25.5	22.5-23.0	11	6	53.5	27	14.7	0.255	72.9
7/17/2007	11:14:25	25.5	22.5-23.0	11	7	53	27	15.0	0.261	74.6
7/17/2007	11:14:26	25.5	22.5-23.0	11	8	53.8	27	15.1	0.255	72.8
7/17/2007	11:14:27	25.5	23.0-23.5	11	9	53.1	27	15.0	0.261	74.5
7/17/2007	11:14:29	25.5	23.0-23.5	11	10	53.3	27	15.0	0.248	70.8
7/17/2007	11:14:30	25.5	23.0-23.5	11	11	53.3	27	15.0	0.258	73.8
7/17/2007	11:14:31	25.5	23.0-23.5	11	12	53.5	27	15.1	0.258	73.6
7/17/2007	11:14:32	25.5	23.0-23.5	11	13	53.2	27	15.0	0.261	74.7
7/17/2007	11:14:33	25.5	23.0-23.5	11	14	53.2	27	15.1	0.264	75.5
7/17/2007	12:19:52	35.5	30.0-30.5	20	1	0	26	15.4	0.271	77.5
7/17/2007	12:19:53	35.5	30.0-30.5	20	2	55.6	27	15.6	0.266	75.9
7/17/2007	12:19:54	35.5	30.0-30.5	20	3	52.8	27	15.5	0.267	76.3
7/17/2007	12:19:55	35.5	30.0-30.5	20	4	53.5	26	15.4	0.259	74.1
7/17/2007	12:19:56	35.5	30.0-30.5	20	5	53.2	27	15.5	0.271	77.3
7/17/2007	12:19:57	35.5	30.0-30.5	20	6	52.9	27	15.4	0.264	75.4
7/17/2007	12:19:58	35.5	30.0-30.5	20	7	53.2	27	15.4	0.268	76.6
7/17/2007	12:20:00	35.5	30.0-30.5	20	8	53.4	27	15.5	0.268	76.6
7/17/2007	12:20:01	35.5	30.0-30.5	20	9	53.2	27	15.4	0.272	77.8
7/17/2007	12:20:02	35.5	30.5-31.0	20	10	53.6	27	15.5	0.265	75.6
7/17/2007	12:20:03	35.5	30.5-31.0	20	11	53	27	15.3	0.271	77.4
7/17/2007	12:20:04	35.5	30.5-31.0	20	12	52.8	27	15.4	0.260	74.4
7/17/2007	12:20:05	35.5	30.5-31.0	20	13	53.1	27	15.5	0.270	77.3
7/17/2007	12:20:06	35.5	30.5-31.0	20	14	53.2	27	15.5	0.264	75.4
7/17/2007	12:20:07	35.5	30.5-31.0	20	15	53.2	27	15.4	0.276	78.9
7/17/2007	12:20:08	35.5	30.5-31.0	20	16	53	27	15.5	0.262	74.9
7/17/2007	12:20:09	35.5	30.5-31.0	20	17	53.1	27	15.4	0.273	78.0

7/17/2007	12:20:11	35.5	30.5-31.0	20	18	53.3	27	15.3	0.263	75.0
7/17/2007	12:20:12	35.5	31.0-31.5	20	19	52.8	27	15.5	0.267	76.4
7/17/2007	12:20:13	35.5	31.0-31.5	20	20	53.3	27	15.5	0.264	75.3
7/17/2007	12:20:14	35.5	31.0-31.5	20	21	53.1	27	15.4	0.268	76.7
7/17/2007	12:20:15	35.5	31.0-31.5	20	22	53	27	15.4	0.264	75.5
7/17/2007	12:20:16	35.5	31.0-31.5	20	23	53.1	27	15.5	0.272	77.9
7/17/2007	12:20:17	35.5	31.0-31.5	20	24	53.1	27	15.5	0.265	75.6
7/17/2007	12:20:18	35.5	31.0-31.5	20	25	53.1	27	15.5	0.271	77.4
7/17/2007	12:20:19	35.5	31.0-31.5	20	26	53.1	27	15.7	0.266	75.9
7/17/2007	12:20:21	35.5	31.0-31.5	20	27	53.1	27	15.5	0.267	76.4
7/17/2007	12:20:22	35.5	31.0-31.5	20	28	53	27	15.6	0.266	76.1
7/17/2007	12:20:22	35.5	31.0-31.5	20	29	53.3	27	15.6	0.273	78.1
7/17/2007	12:34:52	45.5	40.0-40.5	23	30	0	26	15.6	0.275	78.5
7/17/2007	12:34:53	45.5	40.0-40.5	23	31	55.1	26	15.4	0.260	74.3
7/17/2007	12:34:54	45.5	40.0-40.5	23	32	52.7	20 26	15.6	0.260	76.1
7/17/2007	12:34:54	45.5 45.5	40.0-40.5	23	32 33	53.1	20 27	15.6	0.267	76.2
7/17/2007	12:34:55				33 34	53.1 53.4				
7/17/2007		45.5	40.0-40.5	23			27	15.6	0.266	75.9 75.0
	12:34:58	45.5	40.0-40.5	23	35	53.2	27	15.5	0.266	75.9
7/17/2007	12:34:59	45.5	40.5-41.0	23	36	53.1	27	15.4	0.264	75.3
7/17/2007	12:35:00	45.5	40.5-41.0	23	37	52.9	27	15.5	0.265	75.6
7/17/2007	12:35:01	45.5	40.5-41.0	23	38	53.3	27	15.6	0.263	75.1
7/17/2007	12:35:02	45.5	40.5-41.0	23	39	53.2	27	15.5	0.266	75.9
7/17/2007	12:35:03	45.5	40.5-41.0	23	40	53.3	27	15.7	0.268	76.5
7/17/2007	12:35:04	45.5	40.5-41.0	23	41	52.7	27	15.6	0.268	76.7
7/17/2007	12:35:05	45.5	40.5-41.0	23	42	53.2	27	15.7	0.272	77.7
7/17/2007	12:35:06	45.5	40.5-41.0	23	43	53.2	27	15.7	0.264	75.5
7/17/2007	12:35:08	45.5	41.0-41.5	23	44	53	27	15.6	0.268	76.6
7/17/2007	12:35:09	45.5	41.0-41.5	23	45	53.2	27	15.7	0.265	75.8
7/17/2007	12:35:10	45.5	41.0-41.5	23	46	52.9	27	15.8	0.268	76.5
7/17/2007	12:35:11	45.5	41.0-41.5	23	47	53.2	27	15.7	0.264	75.5
7/17/2007	12:35:12	45.5	41.0-41.5	23	48	52.9	27	15.7	0.267	76.3
7/17/2007	12:35:13	45.5	41.0-41.5	23	49	52.8	27	15.6	0.268	76.7
7/17/2007	12:35:14	45.5	41.0-41.5	23	50	52.8	27	15.6	0.267	76.2
7/17/2007	12:35:15	45.5	41.0-41.5	23	51	52.9	26	15.7	0.268	76.7
7/17/2007	12:35:16	45.5	41.0-41.5	23	52	52.9	26	15.5	0.267	76.2
7/17/2007	12:35:18	45.5	41.0-41.5	23	53	52.7	27	15.7	0.270	77.1
7/17/2007	12:35:19	45.5	41.0-41.5	23	54	52.9	26	15.8	0.269	77.0
7/17/2007	12:35:20	45.5	41.0-41.5	23	55	52.8	27	15.7	0.267	76.2
7/17/2007	12:35:21	45.5	41.0-41.5	23	56	52.9	27	15.6	0.268	76.5
7/17/2007	12:35:22	45.5	41.0-41.5	23	57	52.8	27	15.8	0.270	77.0
7/17/2007	12:35:23	45.5	41.0-41.5	23	58	52.8	26	15.8	0.270	77.3
7/17/2007	13:00:20	63.5	60-60.5	32	61	0	27	15.6	0.282	80.6
7/17/2007	13:00:22	63.5	60-60.5	32	62	54.1	27	16.0	0.292	83.3
7/17/2007	13:00:23	63.5	60-60.5	32	63	53.6	28	16.3	0.298	85.1
7/17/2007	13:00:24	63.5	60-60.5	32	64	54.9	27	15.7	0.264	75.5
7/17/2007	13:00:25	63.5	60-60.5	32	65	52.8	27	16.1	0.271	77.3
7/17/2007	13:00:26	63.5	60-60.5	32	66	54.1	27	16.0	0.270	77.1
7/17/2007	13:00:27	63.5	60.5-61.0	32	67	53.9	27	15.7	0.271	77.4
7/17/2007	13:00:28	63.5	60.5-61.0	32	68	53.9	27	15.8	0.270	77.2
7/17/2007	13:00:29	63.5	60.5-61.0	32	69	53.7	27	15.7	0.271	77.4
7/17/2007	13:00:30	63.5	60.5-61.0	32	70	53.6	27	15.9	0.271	77.6
7/17/2007	13:00:31	63.5	60.5-61.0	32	71	53.5	27	15.7	0.274	78.3
	10.00.01	00.0		52		50.0	<u> </u>	10.1	VIL (T	

7/17/2007	13:00:32	63.5	60.5-61.0	32	72	53.7	27	15.8	0.273	78.0
7/17/2007	13:00:34	63.5	60.5-61.0	32	73	54	27	15.8	0.273	77.9
7/17/2007	13:00:35	63.5	60.5-61.0	32	74	53.6	27	15.9	0.274	78.4
7/17/2007	13:00:36	63.5	60.5-61.0	32	75	54	27	15.6	0.272	77.8
7/17/2007	13:00:37	63.5	60.5-61.0	32	76	53.5	27	15.9	0.278	79.5
7/17/2007	13:00:38	63.5	60.5-61.0	32	77	53.8	27	15.8	0.274	78.3
7/17/2007	13:00:39	63.5	60.5-61.0	32	78	53.6	27	15.7	0.272	77.7
7/17/2007	13:00:40	63.5	60.5-61.0	32	79	53.7	27	15.9	0.273	78.1
7/17/2007	13:00:41	63.5	60.5-61.0	32	80	53.5	27	15.8	0.272	77.8
7/17/2007	13:00:42	63.5	61.0-61.5	32	81	53.8	27	15.8	0.272	77.8
7/17/2007	13:00:43	63.5	61.0-61.5	32	82	53.3	27	15.9	0.272	78.0
7/17/2007	13:00:45	63.5	61.0-61.5	32	83	53.6	27	15.9	0.275	78.5
7/17/2007	13:00:45	63.5 63.5	61.0-61.5	32	83 84	53.6	27	15.9	0.273	78.0
7/17/2007	13:00:40	63.5 63.5	61.0-61.5	32 32	85	53.0 53.4	27	15.8	0.275	78.5
7/17/2007	13:00:48	63.5	61.0-61.5	32	86	53.7	27	15.8	0.273	77.9
7/17/2007	13:00:49	63.5	61.0-61.5	32	87	53.6	27	15.9	0.274	78.4
7/17/2007	13:00:50	63.5	61.0-61.5	32	88	53.5	27	15.8	0.272	77.7
7/17/2007	13:00:51	63.5	61.0-61.5	32	89	53.7	27	15.9	0.273	78.0
7/17/2007	13:00:52	63.5	61.0-61.5	32	90	53.5	27	15.9	0.272	77.8
7/17/2007	13:00:53	63.5	61.0-61.5	32	91	53.6	27	16.0	0.273	77.9
7/17/2007	13:00:54	63.5	61.0-61.5	32	92	53.4	27	15.8	0.273	78.0
7/17/2007	13:00:56	63.5	61.0-61.5	32	93	53.7	27	15.6	0.269	77.0
7/17/2007	13:00:57	63.5	61.0-61.5	32	94	53.3	27	15.9	0.271	77.3
7/17/2007	13:00:58	63.5	61.0-61.5	32	95	53.5	27	15.9	0.271	77.4
7/17/2007	13:00:59	63.5	61.0-61.5	32	96	53.5	27	15.8	0.270	77.2
7/17/2007	13:01:00	63.5	61.0-61.5	32	97	53.6	27	16.0	0.270	77.3
7/17/2007	13:01:01	63.5	61.0-61.5	32	98	53.6	27	16.0	0.271	77.3
7/17/2007	13:52:14	85.5	80.0-80.5	*49=8"	100	0	26	15.4	0.268	76.6
7/17/2007	13:52:15	85.5	80.0-80.5	*49=8"	101	55.5	27	16.0	0.273	77.9
7/17/2007	13:52:16	85.5	80.0-80.5	*49=8"	102	55	27	16.1	0.278	79.5
7/17/2007	13:52:17	85.5	80.0-80.5	*49=8"	103	55.1	27	16.0	0.276	78.9
7/17/2007	13:52:18	85.5	80.0-80.5	*49=8"	104	55.2	27	16.0	0.274	78.2
7/17/2007	13:52:19	85.5	80.0-80.5	*49=8"	105	54.9	27	15.9	0.273	78.0
7/17/2007	13:52:20	85.5	80.0-80.5	*49=8"	106	55	27	16.1	0.276	78.9
7/17/2007	13:52:21	85.5	80.0-80.5	*49=8"	107	55.1	27	16.1	0.274	78.4
7/17/2007	13:52:22	85.5	80.0-80.5	*49=8"	108	54.8	27	16.1	0.276	78.8
7/17/2007	13:52:23	85.5	80.0-80.5	*49=8"	109	55.2	27	16.2	0.274	78.4
7/17/2007	13:52:24	85.5	80.0-80.5	*49=8"	110	54.8	27	16.2	0.276	79.0
7/17/2007	13:52:25	85.5	80.0-80.5	*49=8"	111	55	27	16.1	0.274	78.2
7/17/2007	13:52:26	85.5	80.0-80.5	*49=8"	112	55	27	16.0	0.273	77.9
7/17/2007	13:52:27	85.5	80.0-80.5	*49=8"	113	55	27	16.3	0.278	79.3
7/17/2007	13:52:28	85.5	80.5-81.0	*49=8"	114	54.9	27	16.3	0.276	78.7
7/17/2007	13:52:30	85.5	80.5-81.0	*49=8"	115	55.1	27	16.4	0.277	79.1
7/17/2007	13:52:31	85.5	80.5-81.0	*49=8"	116	54.8	27	16.3	0.276	78.9
7/17/2007	13:52:32	85.5	80.5-81.0	*49=8"	117	55.3	27	16.4	0.276	78.9
7/17/2007	13:52:32	85.5	80.5-81.0	*49=8"	118	54.7	27	16.4	0.279	79.7
7/17/2007	13:52:34	85.5	80.5-81.0	*49=8"	119	55	27	16.2	0.275	79.0
7/17/2007	13:52:35	85.5	80.5-81.0	*49=8"	120	55.4	27	16.2	0.276	78.8
7/17/2007	13:52:36	85.5	80.5-81.0	*49=8"	121	54.8	27	16.2	0.278	79.3
7/17/2007	13:52:30	85.5	80.5-81.0	*49=8"	122	54.8 55.1	27	16.2	0.275	79.3 78.6
7/17/2007	13:52:37	85.5	80.5-81.0	*49=8"	122	54.5	27	16.3	0.275	78.6
7/17/2007	13:52:38	85.5	80.5-81.0	49-8 *49=8"	123	54.5 55.2	27	16.3	0.275	78.4
11112001	10.02.00	00.0	00.0-01.0	43-0	124	JJ.Z	21	10.2	0.274	70.4


7/17/2007	13:52:40	85.5	80.5-81.0	*49=8"	125	54.7	27	16.4	0.273	78.0
7/17/2007	13:52:41	85.5	80.5-81.0	*49=8"	126	55.4	27	16.2	0.272	77.7
7/17/2007	13:52:42	85.5	80.5-81.0	*49=8"	127	54.6	27	16.0	0.269	76.9
7/17/2007	13:52:43	85.5	80.5-81.0	*49=8"	128	54.9	27	16.1	0.271	77.4
7/17/2007	13:52:45	85.5	80.5-81.0	*49=8"	129	55	27	16.1	0.270	77.1
7/17/2007	13:52:46	85.5	80.5-81.0	*49=8"	130	55.2	27	16.2	0.275	78.5
7/17/2007	13:52:47	85.5	80.5-81.0	*49=8"	131	54.9	27	16.4	0.274	78.2
7/17/2007	13:52:48	85.5	80.5-81.0	*49=8"	132	54.9	26	16.2	0.270	77.2
7/17/2007	13:52:49	85.5	80.5-81.0	*49=8"	133	54.9	27	16.3	0.275	78.6
7/17/2007	13:52:50	85.5	80.5-81.0	*49=8"	134	54.8	27	16.1	0.269	77.0
7/17/2007	13:52:51	85.5	80.5-81.0	*49=8"	135	55.2	27	16.2	0.200	78.1
7/17/2007	13:52:52	85.5	80.5-81.0	*49=8"	136	54.9	27	16.2	0.274	78.3
7/17/2007	13:52:53	85.5	80.5-81.0	*49=8"	137	54.8	26	16.3	0.274	78.8
7/17/2007	13:52:53	85.5	80.5-81.0	*49=8"	138	55.1	20 27	16.0	0.270	77.5
7/17/2007	13:52:55	85.5	80.5-81.0	*49=8"	139	54.5	27	16.3	0.271	79.0
7/17/2007	13:52:55	85.5 85.5	80.5-81.0	49-8 *49=8"	140	54.5 55.1	27	16.2	0.277	79.0 78.5
7/17/2007		85.5 85.5	80.5-81.0 80.5-81.0	49-8 *49=8"	140	55.1 54.6	27	16.2	0.275	78.8
	13:52:57			*49=8	141					
7/17/2007	13:52:59	85.5 85.5	80.5-81.0			55	26	16.3	0.273	78.1
7/17/2007	13:53:00	85.5	80.5-81.0	*49=8"	143	54.6	27	16.2	0.274	78.2
7/17/2007	13:53:01	85.5	80.5-81.0	*49=8"	144	55	27	16.1	0.270	77.3
7/17/2007	13:53:02	85.5	80.5-81.0	*49=8"	145	55.2	27	16.3	0.274	78.2
7/17/2007	13:53:03	85.5	81.0-81.5	*49=8"	146	54.2	26	15.8	0.265	75.7
7/17/2007	13:53:04	85.5	81.0-81.5	*49=8"	147	55.7	27	16.1	0.275	78.7
7/17/2007	13:53:05	85.5	81.0-81.5	*49=8"	148	54.8	27	16.2	0.275	78.5
7/17/2007	13:53:06	85.5	81.0-81.5	*49=8"	149	55.1	27	16.3	0.277	79.1
7/17/2007	13:53:07	85.5	81.0-81.5	*49=8"	150	54.9	27	16.2	0.274	78.2
7/17/2007	13:53:08	85.5	81.0-81.5	*49=8"	151	55	26	16.4	0.276	78.9
7/17/2007	13:53:09	85.5	81.0-81.5	*49=8"	152	54.8	27	16.3	0.279	79.7
7/17/2007	13:53:10	85.5	81.0-81.5	*49=8"	153	54.4	27	15.9	0.270	77.1
7/17/2007	13:53:11	85.5	81.0-81.5	*49=8"	154	55.7	27	16.2	0.278	79.5
7/17/2007	13:53:12	85.5	81.0-81.5	*49=8"	155	54.4	27	15.9	0.268	76.7
7/17/2007	13:53:14	85.5	81.0-81.5	*49=8"	156	55.1	27	16.0	0.276	78.9
7/17/2007	13:53:15	85.5	81.0-81.5	*49=8"	157	54.7	28	16.1	0.278	79.4
7/17/2007	13:53:16	85.5	81.0-81.5	*49=8"	158	54.9	27	16.1	0.273	78.0
7/17/2007	13:53:17	85.5	81.0-81.5	*49=8"	159	54.8	28	16.1	0.283	80.8
7/17/2007	13:53:18	85.5	81.0-81.5	*49=8"	160	55.1	28	16.2	0.283	80.8
7/17/2007	13:53:19	85.5	81.0-81.5	*49=8"	161	55	27	16.1	0.277	79.3
7/17/2007	13:53:20	85.5	81.0-81.5	*49=8"	162	54.9	27	16.2	0.282	80.6
7/17/2007	14:31:13	105.5	100.0-100.5		163	0	26	16.2	0.282	80.6
7/17/2007	14:31:14	105.5	100.0-100.5		164	54.4	27	16.1	0.275	78.6
7/17/2007	14:31:15	105.5	100.0-100.5		165	54.4	27	16.1	0.278	79.6
	14:31:16	105.5	100.0-100.5		166	53.8	27	16.2	0.276	78.8
	14:31:17	105.5	100.0-100.5		167	53.9	27	16.0	0.277	79.3
	14:31:18	105.5	100.0-100.5		168	53.7	27	16.0	0.276	78.7
	14:31:19	105.5	100.0-100.5		169	54	26	15.8	0.274	78.2
	14:31:20	105.5	100.0-100.5		170	53.9	27	15.8	0.271	77.5
	14:31:22	105.5	100.0-100.5		171	53.6	27	15.8	0.274	78.3
	14:31:23	105.5	100.0-100.5		172	54	27	15.7	0.271	77.4
	14:31:24	105.5	100.0-100.5		173	53.9	27	15.8	0.276	79.0
	14:31:25	105.5	100.0-100.5		174	53.9	27	15.8	0.272	77.8
	14:31:26	105.5	100.0-100.5		175	53.9	28	16.0	0.279	79.8
7/17/2007	14:31:27	105.5	100.0-100.5	*33=4"	176	54.1	27	15.9	0.273	78.1

7/17/2007	14:31:28	105.5	100.0-100.5 *33=4"	177	53.9	28	15.9	0.276	78.7
7/17/2007	14:31:29	105.5	100.0-100.5 *33=4"	178	53.7	28	15.9	0.272	77.7
7/17/2007	14:31:30	105.5	100.0-100.5 *33=4"	179	53.9	28	15.9	0.272	77.6
7/17/2007	14:31:31	105.5	100.0-100.5 *33=4"	180	53.9	27	15.7	0.270	77.2
7/17/2007	14:31:32	105.5	100.0-100.5 *33=4"	181	53.9	27	15.7	0.270	77.0
7/17/2007	14:31:34	105.5	100.0-100.5 *33=4"	182	53.8	27	15.9	0.270	77.1
7/17/2007	14:31:35	105.5	100.0-100.5 *33=4"	183	54.1	28	15.9	0.272	77.7
7/17/2007	14:31:36	105.5	100.5-101.0 *33=4"	184	53.9	27	15.9	0.273	77.9
7/17/2007	14:31:37	105.5	100.5-101.0 *33=4"	185	53.6	28	16.0	0.274	78.3
7/17/2007	14:31:38	105.5	100.5-101.0 *33=4"	186	54	28	16.0	0.273	78.1
7/17/2007	14:31:39	105.5	100.5-101.0 *33=4"	187	53.7	28	15.9	0.272	77.6
7/17/2007	14:31:40	105.5	100.5-101.0 *33=4"	188	53.9	28	16.0	0.271	77.5
7/17/2007	14:31:41	105.5	100.5-101.0 *33=4"	189	54	28	16.1	0.275	78.6
7/17/2007	14:31:42	105.5	100.5-101.0 *33=4"	190	53.8	27	15.9	0.273	78.1
7/17/2007	14:31:43	105.5	100.5-101.0 *33=4"	191	53.8	27	16.0	0.275	78.6
7/17/2007	14:31:45	105.5	100.5-101.0 *33=4"	192	53.9	27	16.2	0.275	78.6
7/17/2007	14:31:46	105.5	100.5-101.0 *33=4"	193	53.9	27	15.9	0.275	78.4
7/17/2007	14:31:47	105.5	100.5-101.0 *33=4"	194	53.7	27	16.2	0.275	78.5
7/17/2007	14:31:48	105.5	100.5-101.0 *33=4"	195	53.7	27	16.0	0.277	79.3
7/17/2007	14:31:49	105.5	100.5-101.0 *33=4"	196	53.9	28	16.2	0.277	79.2
7/17/2007	14:31:50	105.5	100.5-101.0 *33=4"	197	53.7	28	16.2	0.279	79.6
7/17/2007	14:31:51	105.5	100.5-101.0 *33=4"	198	53.8	27	16.0	0.275	78.5
7/17/2007	14:31:52	105.5	100.5-101.0 *33=4"	199	53.7	28	16.1	0.278	79.3
7/17/2007	14:31:53	105.5	100.5-101.0 *33=4"	200	53.5	27	16.1	0.275	78.6
7/17/2007	14:31:54	105.5	100.5-101.0 *33=4"	201	54.2	28	16.0	0.273	78.0
7/17/2007	14:31:55	105.5	100.5-101.0 *33=4"	202	53.7	27	16.1	0.273	78.1
7/17/2007	14:31:57	105.5	100.5-101.0 *33=4"	203	53.6	27	15.9	0.275	78.6
7/17/2007	14:31:58	105.5	100.5-101.0 *33=4"	204	53.9	27	16.2	0.275	78.6
7/17/2007	14:31:59	105.5	100.5-101.0 *33=4"	205	53.9	28	16.1	0.276	78.8
7/17/2007	14:32:00	105.5	100.5-101.0 *33=4"	206	53.9	27	16.1	0.274	78.3
7/17/2007	14:32:01	105.5	100.5-101.0 *33=4"	207	53.3	27	16.0	0.273	78.1
7/17/2007	14:32:02	105.5	100.5-101.0 *33=4"	208	54	27	16.1	0.271	77.6
7/17/2007	14:32:03	105.5	100.5-101.0 *33=4"	209	53.5	27	16.0	0.271	77.6
7/17/2007	14:32:04	105.5	100.5-101.0 *33=4"	210	54.4	27	16.0	0.273	78.0
7/17/2007	14:32:05	105.5	100.5-101.0 *33=4"	211	53.6	27	16.1	0.274	78.4
7/17/2007	14:32:06	105.5	100.5-101.0 *33=4"	212	53.8	27	15.9	0.272	77.7
7/17/2007	14:32:08	105.5	100.5-101.0 *33=4"	213	53.8	27	16.2	0.277	79.2
7/17/2007	14:32:09	105.5	100.5-101.0 *33=4"	214	53.9	27	16.2	0.274	78.2
7/17/2007	14:32:10	105.5	100.5-101.0 *33=4"	215	53.8	27	16.1	0.277	79.0
7/17/2007	14:32:11	105.5	100.5-101.0 *33=4"	216	53.8	27	16.2	0.275	78.6

* SPT Test halted to reduce wear on SPT energy measuring equipment

Appendix B BORING LOGS

LEGEND

<u>"N" Value</u>	Density	<u>'N' Value</u>	Consistency	<u>'N' Value</u>	<u>Consistency</u>	'N' Value	<u>Consistency</u>
0-4	Very Loose	0-1	Very Soft	0-1	Very Soft		
5-10	Loose	2-4	Soft.	2-4	Soft	31-60	Soft
11-30	Medium Dense	5-8	Medium Stiff	5-8	Medium Stiff	0ver 60	
31-50	Dense	9-15	Stiff	9-15	Stiff	More than	2'
0ver 50	Very Dense	16-30	Very Stiff	16-30	Very Stiff	Penetrati	on
		31-60	Hard	31-60	Hard	in 60 Blow	vs∎ Medium Hard
		0ver 60	Very Hard	Over 60	Very Hard	Less than	2'
						Penetrati	on
						in 60 Blow	vs Hard

- Ground water elevations indicated on boring logs represent ground water elevation at date or time shown on drilling log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.
- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- 3. Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test - Driving a 2.0' 0.D., 1-3/8' I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30.0 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6.0 inches of penetration on the drill log (The 'N' Value can be obtained by adding the bottom two numbers (i.e. $\frac{6}{8}$, 8+9 = 17 blows/ft). Unless otherwise noted on the $\frac{8}{8} - 9$

drill log, the Standard Penetration Test was performed utilizing a Central Mine Equipment (CME) automatic hammer.

	HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	g no 1		iling-18 Γαα	500			
JOB NO.	E457 Pulaski County		DATE:			ovembe	er 21,	2006	5	
JOB NAME:	SPT Hammer Test	-	TYPE O	F DR			tary V	Vash	- Te	st
STATION: LOCATION:	Primary Test Site		EQUIPM			Failing Auton	1500 natic I	Ham	etricl mer	1
COMPLETIO	N DEPTH: 100.8]	LOGGEI) BY		K1C	hard N	Marti	n	
D S A P M P H O L E S FT.	DESCRIPTION OF MATERIAL	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	NO. OF BLOWS	PER 6-IN.	% S R	% R Q D
FI. 3	SURFACE ELEVATION:			%	33		ĬŻ	Ā		
5 5 	Moist, Very Loose, Brown Sand							2		
X	Moist, Very Loose, Brown Silty Sand						2	-2		
 	Moist, Very Loose, Brown Silty Sand with Traces of Gravel									
REMARKS:	· · · · · · · · · · · · · · · · · · ·		•			•				

	HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N 2		iling- F αα		0			
	E457 Pulaski County		DATE:			ovem		21, 2	006		\neg
JOB NAME:	SPT Hammer Test		TYPE O	F DR			Rota	ry W	ash	- Tes	st
STATION: LOCATION:	Primary Test Site		EQUIPM				g 15 oma	tic H	/Die amn	etrich ner	L
	J DEDTIL 100.0		LOGGE	D BY		R	icha	rd M	artir	1	_
	N DEPTH: 100.8										_
E SYMPL PTBOL HOL	DESCRIPTION OF MATERIAL SURFACE ELEVATION:	SOIL GROUI	PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S C R	% R Q D
	SURFACE ELEVATION.			~	ЦЦ	А		Z	<u>~</u>	_	_
 _40								8			
	Moist, Medium Dense, Brown Sand with Traces of Gravel							8-1			
X	Moist, Medium Dense, Brown Sand							13-1	16		
REMARKS:				1	1	1	1		1		

		HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N 3		iling- F αα)0			
JOB NO.		E457 Pulaski County		DATE:			oven		21,2	2006	5	
JOB NAME:		SPT Hammer Test		ТҮРЕ О	F DR	ILLING	: I	Rota	ary W			st
STATION:		Drimon / Tost Site		EQUIPN	1ENT	: I	Failin				etricl	ı
LOCATION:		Primary Test Site		LOGGE	D BY				ard N			
COMPLETI	10	N DEPTH: 100.8										
E 3 / 1 P M I T B I H 0 -	SANPLES	DESCRIPTION OF MATERIAL SURFACE ELEVATION:	SOIL GROUI	PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S R	% R Q D
	-	Son Act Leevanon.						<u> </u>	4	<u> </u>		
 80		Moist, Medium Dense, Brown Sand with Traces of Gravel										
 	X	Moist, Very Dense, Brown Silty Sand with Traces of Gravel							2 6 (6 3	0		
	$\widehat{}$	Boring Terminated		-					5	2		
									(4	<u></u>		
105 REMARKS:	:			<u> </u>	<u> </u>	<u> </u>	<u> </u>					

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N 1		1E-7 F α0					
JOB N			E457 Pulaski County		DATE:			Decei	mbe				
JOB N	AME:		SPT Hammer Test		TYPE O	F DR	ILLING	:	Rota	ary V Hai	Vash mme	- Te r	st
STAT	ION:				EQUIPM	IENT	: CM	E 75		/CM	ΕAι		atic
LOCA	TION	:	Primary Test Site		LOGGE	n BV		Ios		lamn iggir		om	
СОМ	PLET	101°	N DEPTH: 100.4		LOOGE		•	505		15511	10011	UIII	
D E	s	S A											
P T	Y M	M P	DESCRIPTION OF MATERIAL	SOIL				ΉT	U.FT.	OWS		% S	% R
н	B O	L		GROUI	'[일	DIST.	a_	WEIG	ER C	F BL	Ľ.	C R	Q D
FT.	Ľ	E S	SURFACE ELEVATION:		PLASTIC LIMIT	% MOIST.	LIMIT	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.		
					\uparrow						1		
 5													
<u> </u>													
10													
<u> </u>													
15													
<u> </u>													
20		\bigtriangledown	Wet, Medium Dense, Brown Sand								5		
		\square								8-	10		
 25													
30													
<u> </u>													
<u> </u>													
35													
REM	ARK	5: I	Hollow stem augers were utilized to a depth of 9.5'.										

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N 2		/Ε-7 Fαα					
JOB N			E457 Pulaski County		DATE:					r 4, 2	2006		
JOB N	AME:		SPT Hammer Test		TYPE O	F DR				ary V	Vash	- Te	st
								— –	50		mme		
STAT: LOCA			Primary Test Site		EQUIPN	IENT	: CM	IE 7:		/CM		itom	atic
LUCA					LOGGE	D BY	:	Jo		iggir		om	
СОМ	PLET	'IOI	N DEPTH: 100.4					_					
D	s	S											
E P	Y	A M						ы	FT.	NS		%	%
Т	M B	Ρ	DESCRIPTION OF MATERIAL	SOIL GROUI				IGH	C.	TO		S C	R Q
н	0	L E		GIGOUI		LSIO	le H	WE	PER	OF B	NI-9	R	Ď
FT.	L		SURFACE ELEVATION:		PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
40											, ,		
		Х								13-	3 -18		
		<u> </u>											
<u> </u>													
45													
50			Wat Dance Brown Sand										
			Wet, Dense, Brown Sand										
55													
<u> </u>													
<u> </u>													
┣													
60													
		\bigtriangledown									2		
		\square								16-	-21		
65													
L _													
<u> </u>													
<u> </u>													
— — —													
70 REM		2. 1	l Hollow stem augers were utilized to a depth of 0.5!										
	AKK	5: I	Hollow stem augers were utilized to a depth of 9.5'.										

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	IG N 3		/Ε-7 Fαα					
JOB N			E457 Pulaski County		DATE:					r 4. 2	2006		
JOB N			SPT Hammer Test		TYPE O	F DR				ary V	Vash	- Te	st
											mme		
STATI		_	Primary Test Site		EQUIPN	1ENT	: CM	IE 7:		/CM lamn		utom	atic
LOCA	TION:				LOGGE	D BY		Jo			nbott	om	
COM	PLET	IOI	N DEPTH: 100.4										
D	s	S											
E P	Y	A M						н	FT.	MS		%	%
Т	M B	P	DESCRIPTION OF MATERIAL	SOIL GROUI				HOI	G	BLO	:	S C	R Q
н	0	L E			IX	% MOIST.	BH	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.	R	Ď
FT.	L	s	SURFACE ELEVATION:		PLAST	W %	LIMIT	DR	LBS	NO.	PER		
			Wet, Dense, Brown Sand with Traces of Gravel										
75													
80													
		X									2		
										(3	28 3")		
	\mathbb{N}												
85													
	\mathbb{N}												
90			Wet, Very Dense, Brown Sand with Clay Seams										
			and Traces of Gravel										
95													
100													
		\geq	Wet, Very Dense, Brown Sand Boring Terminated								50 5")		
105 REM		<u> </u>	Hollow stem augers were utilized to a depth of 9.5'.										
		J. 1	ionow stem augers were utilized to a depth of 9.5.										
													_

		HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N 1		1E-7ξ F αα					
JOB NO.		E457 Pulaski County		DATE:	-	_	ovem	ıber				
JOB NAM	E:	SPT Hammer Test		TYPE O	F DR	LLING	: F	Rota		Vash mme	- Te	st
STATION				EQUIP№	IENT	: CN	Æ 75		СМ	E Au		tic
LOCATIO	N:	Primary Test Site		LOGGE	D BY	:	(amm son S		L	
		N DEPTH: 100.7			1							
D S E Y T B H O FT.		DESCRIPTION OF MATERIAL	SOIL GROUF	PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S R	% R Q D
		Moist, Very Loose, Brown Sand										
		Moist, Loose, Brown Silty Sand							2- 	5* 5		
30												
35												
		Hollow stem augers were utilized to a depth of 9.5'.									nydra	aulic
		chuck release mechanism was engaged, reducing flo	ow to S	PIha	mm	er hy	draul	IC N	noto	r.		

	IWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NO 2		1E-7 Γαο					
	E457 Pulaski County		DATE:	~				21, 2	2006	;	
	SPT Hammer Test		ΓΥΡΕ ΟΙ	F DRI				ıry W Har	ash	- Te	st
STATION:	Deine and Tant Cita		equipm	ENT	: CM	1E 7			E Au		tic
	Primary Test Site		LOGGEI) BY:	:			inn S			
COMPLETION	DEPTH: 100.7										
D S A E Y M T B L H O E FT. S S		SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S R	% R Q D
	SURFACE ELEVATION:			%		ñ	Ξ	Ż	Ŀ		
	Moist, Medium Dense, Brown Sand with Traces of Gravel							77-1			
	Moist, Medium Dense, Brown Gravel							8 8			
	Moist, Medium Dense, Brown Sand with Traces										
70	of Gravel										
	ollow stem augers were utilized to a depth of 9.5'. * nuck release mechanism was engaged, reducing fl									nydra	aulic

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N 3		/Ε-7 Fα					
JOB NO			E457 Pulaski County		DATE:	-		over	mber	r 21,			
JOB NA	AME:		SPT Hammer Test		TYPE O	F DR	ILLING	:	Rota	ary V			st
STATIO	ON-				EQUIPM	IENIT	. CI	/E 7	15 m		mme		tic
LOCAT			Primary Test Site		LQUIIN		. 01			lamn			
					LOGGE	D BY			Cars	son S	loan		
	PLET	_	N DEPTH: 100.7					-					
D E	s	S A											
Р	Y M	M	DESCRIPTION OF MATERIAL	SOIL				H	LFT.	SW		% S	% R
Т Н	B	P L		GROUT		Ŀ.		EIG	SCL	BLO	Ż	С	Q
	0	E			PLASTIC	% MOIST.	LIMIT	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.	R	D
FT.	L	S	SURFACE ELEVATION:		PLAST LIMIT	N %	EIV EIV	DR	LBS	Ő	PEF		
75													
			Moist, Medium Dense, Brown Large Gravel										
80	900 900 900										3		
		Х								15			
— —													
85													
90			Moist, Dense, Brown Fine Sand with Traces of Clay										
			Clay										
95													
100		\ge	Moist, Dense, Brown Sand with Clay Seams								3		
<u> </u>			Boring Terminated							1	1		
					1					ک			
					1								
105													
REMA	ARKS	S: H	Hollow stem augers were utilized to a depth of 9.5'.	* SPT b		ount	inaco	cura	te b	ecal	ise ł	nydra	aulic
		0	chuck release mechanism was engaged, reducing fl	UW 10 S	r i na	mm	er ny	ural	IIIC I	noto	r.		

	HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NO 1		1E45 F αα					
	E457 Pulaski County		DATE:		U	Mar		200)7		
	SPT Hammer Test		TYPE O	F DRI	ILLING			w St		Auge	r-
								est H			-
STATION:		:	EQUIPM	ENT	CN	Æ 45	w/0	CME	L Au	toma	tic
LOCATION:	Secondary Test Site						Ha	amm	er		
			LOGGEI) BY:			Dav	vid K	raft		
COMPLETION	N DEPTH: 9.5										
D S A											
🗄 Y 🖓						ы	ΕÏ	٨S		%	%
	DESCRIPTION OF MATERIAL	SOIL GROUP				GH	B	ГQ		S C	R
H B L		UKUUF	ЦС	ISI	A L	WE	H	ЪВ	Ä	R	Q D
FT.			PLASTIC LIMIT	% MOIST.	LIMIT	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.		
	SURFACE ELEVATION:			%	23	A		Z	Ē		
	Moist, Very Loose, Gray Sandy Silt										
								2			
	Moist, Loose, Reddish Brown Sandy, Clayey Silt							2-3			
5											
	Moist, Loose to Medium Dense, Reddish Brown										
	Sandy Silt										
	Moist, Medium Dense, Reddish Brown Sandy Silt							15	5		
	with Quartz and Shale Fragments							13-	12		
	Boring Terminated										
15											
20											
			1								
			1								
			1								
25			1								
			1								
30											
			1								
			1								
			1								
			1								
35											
REMARKS:											

	HWY. & TRANS. DEPARTMENT		BORIN PAGE	G N 1		1E45 Γαα					
JOB NO.	E457 Pulaski County		DATE:		0			5, 200	7		
JOB NAME:	SPT Hammer Test		TYPE O	F DR	ILLING		Iollo	w Sto est H	em A		r -
STATION:			EQUIPM	ENT	: CN	Æ 4:	5 w/	CME	Au	-	tic
LOCATION:	Secondary Test Site		LOGGEI) BY	:			ammo /id Ki	-		
	N DEPTH: 13.8				1						
DSA EYM PMP HOL FT.	DESCRIPTION OF MATERIAL	SOIL GROUF	PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S C R	% R Q D
FI. 3	SURFACE ELEVATION:			%		ä		Ż	<u> </u>		
	Moist, Very Loose to Loose, Gray Sandy Silt							3			
	Moist, Loose, Reddish Brown and Gray Sandy Silt with some Clay										
	Moist, Hard, Reddish Brown Sandy Clay with Quartz Fragments							12 16-1			
	Medium Dense, Brown and White Quartz										
	Moist, Hard, Reddish Brown Gravelly Clay										
	Moist, Medium Dense, Brown and Gray Gravelly							10			
15	Sand with Shale Fragments Medium Hard, Brown and Gray Weathered Shale Boring Terminated							22 (3"	บ		
20											
25											
30											
35											
REMARKS:											

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G N 1		1 Ε-8 F αc					
JOB N	0.		E457 Pulaski County		DATE:			Jul	y 17	, 200			
JOB N	AME:		SPT Hammer Test		TYPE O	F DR	ILLING	:	Rota	ary V Hai	Vash mme		st
STATI	ION:				EQUIPN	IENT	: CM	E 85	50 w				atic
LOCA	TION:		Primary Test Site					-		amm			
СОМ	PLET	IOI	J DEPTH: 100.8		LOGGE	D BY	:	ł	Cicna	ard N	1arti	n	
D	s	s											
E P	Y	A M						н	FT.	NS		%	%
Т Н	M B	Ρ	DESCRIPTION OF MATERIAL	SOIL GROUI		н		EIGH	s cu	BLO	ż	S C	R Q
	0 L	L E			PLASTIC LIMIT	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.	R	D
FT.	L	S	SURFACE ELEVATION:			8	EE	Ъ	LB	ž	PE		
5			Wet, Loose, Brown Sand										
10													
15			Wet, Loose, Brown Sand with Traces of Clay										
20													
20		\bigtriangledown	Wet, Very Loose, Brown Sand with Traces of							-1 -2-			
		\ominus	Clay										
<u> </u>		Х	Wet, Medium Dense, Brown Sand								, -6		
 25													
\vdash –													
30													
		X								9- -) 11		
\vdash –		\square	Wet, Medium Dense, Brown Sand with Traces of										
\vdash –			Gravel										
35													
REM	ARK	S: /	A hollow stem auger was utilized to a depth of 9.4'.										

	HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	G NO 2		1 E-8 Γαα					
JOB NO.	E457 Pulaski County		DATE:		. 0			, 200'	7		
JOB NAME:	SPT Hammer Test		FYPE O	FDR	LLING	:]	Rota	ry W			st
STATION: LOCATION:	Primary Test Site		equipm	ENT	: CM	E 85		Han /CMF amme	E Au		atic
LOCATION.			LOGGEI) BY		R		rd M		1	
COMPLETIO	N DEPTH: 100.8										
DSA PMP HOE FT.	DESCRIPTION OF MATERIAL SURFACE ELEVATION:	SOIL GROUP	PLASTIC LIMIT	% MOIST.	LIQUID LIMIT	DRY WEIGHT	LBS PER CU.FT.	NO. OF BLOWS	PER 6-IN.	% S C R	% R Q D
			I	<u> </u>	I	I	Π	6 8-1			
	Wet, Medium Dense, Brown Sand with Gravel										
	Wet, Dense, Brown Sand with Gravel							<u>6</u> 14-*			
°, 70 %											
	A hollow stem auger was utilized to a depth of 9.4'.					•					

			HWY. & TRANS. DEPARTMENT DIVISION - GEOTECHNICAL SEC.		BORIN PAGE	IG N		/Ε-8 Fα					
JOB N			E457 Pulaski County		DATE:					7, 200)7		
JOB N	AME:		SPT Hammer Test		TYPE O	F DR	ILLING	:	Rota			- Te	st
STAT					EQUIPN	1ENT	: CM	E 8:		/CM			atic
LOCA	TION:		Primary Test Site		LOGGE	D D1/		т		lamn ard N			
СОМ	PLET	'IOI	N DEPTH: 100.8		LUGGE	DBY	:	1	XICII.		viarti	n	
D	s	s											
E P	Y	Α							Ŀ.	ß		%	%
Р Т	м	M P	DESCRIPTION OF MATERIAL	SOIL				THE	U.F	٥ ٥		S	R
Ĥ	B	Ľ		GROUI	IX	IST.		VEIC	ER C	BI	Ż	C R	Q D
	0 L	E			PLASTIC	% MOIST.	LIQUID	DRY WEIGHT	LBS PER CU.FT	NO. OF BLOWS	PER 6-IN.	Ĩ.	2
FT.		S	SURFACE ELEVATION:			%	33	ä	ΓE	ž	PE		
	80% 80% 0		Wet, Dense, Brown Gravel										
	200												
	ୖୖ୬ୄଌୠୖ												
	800 00 00		Wet, Dense, Brown Gravel with Sand										
75	e Go												
	0.000		Hard, Brown Cemented Sand (75.1' - 75.8')										
	600.84 8												
	90 00 91 0 00		Wet, Dense, Brown Gravel with Sand with some Cemented Sand Seams										
	0 0 00 000		Cemented Sand Seams										
80	80 80									1	4		
	° 8° a	Å								32	-18		
	o 8 o									(2	2")		
	0 8 6 6												
	୍ଟର୍ଚ୍ଚ												
85	666 666 6												
	00 O												
	8 ¤đ¢o												
	ю. 9.96												
90	ල පිර		Wat Var Dance Brown Sandwith Crowsland										
90	80.0		Wet, Very Dense, Brown Sand with Gravel and Traces of Clay										
	98.09 8												
	0.0 0												
95	a												
30													
	8°، 9												
	-19-00 -19-00												
	8.6												
100	4. 9. 9. 9.												
100	- A 49	\ge	Wet, Very Dense, Brown and Gray Sand with								1		
			Traces of Clay and Lignite							3	3		
			Boring Terminated										
105													
		S: /	A hollow stem auger was utilized to a depth of 9.4'.			1	1						
													_

Appendix C PHOTOS

Fig. C-1 SPT Energy Measurement System

OF 1.		*** % B aar 1	ZER
PRUJ TROOMU EURING AT TUFO 2 ERTRIG CHE-1 DRER RUS			REVIEW 1102 FT
141 390 345 1990 326 1 NC 219 5 243 C1555	INCP inch	SAUE	6201- 01.1 - S

Fig. C-2 SPT Analyzer

Fig. C-3 Failing 1500 w/ Dietrich Hammer Drilling at Primary Test Site

Fig. C-4 Mounting Accelerometers on Instrumented Rod

Fig. C-5 SPT Testing Site near South Bank of Arkansas River, Primary Test Site

Fig. C-6 CME-750 All Terrain Rig with Instrumented Rod and Automatic Hammer Attached

Fig. C-7 CME-45 Skid Rig Testing at Secondary Test Site